Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2022, Volume 8, Issue 2, Pages 127–132
DOI: https://doi.org/10.15826/umj.2022.2.010
(Mi umj177)
 

On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$

Alexander A. Makhnevab, Ivan N. Belousovab, Konstantin S. Efimovab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University
References:
Abstract: For a distance-regular graph $\Gamma$ of diameter $3$, the graph $\Gamma_i$ can be strongly regular for $i=2$ or $3$. J. Kulen and co-authors found the parameters of a strongly regular graph $\Gamma_2$ given the intersection array of the graph $\Gamma$ (independently, the parameters were found by A.A. Makhnev and D.V. Paduchikh). In this case, $\Gamma$ has an eigenvalue $a_2-c_3$. In this paper, we study graphs $\Gamma$ with strongly regular graph $\Gamma_2$ and eigenvalue $\theta=1$. In particular, we prove that, for a $Q$-polynomial graph from a series of graphs with intersection arrays $\{2c_3+a_1+1,2c_3,c_3+a_1-c_2;1,c_2,c_3\}$, the equality $c_3=4 (t^2+t)/(4t+4-c_2^2)$ holds. Moreover, for $t\le 100000$, there is a unique feasible intersection array $\{9,6,3;1,2,3\}$ corresponding to the Hamming (or Doob) graph $H(3,4)$. In addition, we found parametrizations of intersection arrays of graphs with $\theta_2=1$ and $\theta_3=a_2-c_3$.
Keywords: strongly regular graph, distance-regular graph, intersection array.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Alexander A. Makhnev, Ivan N. Belousov, Konstantin S. Efimov, “On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$”, Ural Math. J., 8:2 (2022), 127–132
Citation in format AMSBIB
\Bibitem{MakBelEfi22}
\by Alexander~A.~Makhnev, Ivan~N.~Belousov, Konstantin~S.~Efimov
\paper On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$
\jour Ural Math. J.
\yr 2022
\vol 8
\issue 2
\pages 127--132
\mathnet{http://mi.mathnet.ru/umj177}
\crossref{https://doi.org/10.15826/umj.2022.2.010}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4527696}
\elib{https://elibrary.ru/item.asp?id=50043147}
\edn{https://elibrary.ru/YZJOJW}
Linking options:
  • https://www.mathnet.ru/eng/umj177
  • https://www.mathnet.ru/eng/umj/v8/i2/p127
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:68
    Full-text PDF :32
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024