Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2022, Volume 8, Issue 2, Pages 4–12
DOI: https://doi.org/10.15826/umj.2022.2.001
(Mi umj168)
 

This article is cited in 1 scientific paper (total in 1 paper)

Bessel polynomials and some connection formulas in terms of the action of linear differential operators

Baghdadi Aloui, Jihad Souissi

University of Gabes
Full-text PDF (156 kB) Citations (1)
References:
Abstract: In this paper, we introduce the concept of the $\mathbb{B}_{\alpha}$-classical orthogonal polynomials, where $\mathbb{B}_{\alpha}$ is the raising operator $\mathbb{B}_{\alpha}:=x^2 \cdot {d}/{dx}+\big(2(\alpha-1)x+1\big)\mathbb{I}$, with nonzero complex number $\alpha$ and $\mathbb{I}$ representing the identity operator. We show that the Bessel polynomials $B^{(\alpha)}_n(x),\ n\geq0$, where $\alpha\neq-{m}/{2}, \ m\geq -2, \ m\in \mathbb{Z}$, are the only $\mathbb{B}_{\alpha}$-classical orthogonal polynomials. As an application, we present some new formulas for polynomial solution.
Keywords: classical orthogonal polynomials, linear functionals, Bessel polynomials, raising operators, connection formulas.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Baghdadi Aloui, Jihad Souissi, “Bessel polynomials and some connection formulas in terms of the action of linear differential operators”, Ural Math. J., 8:2 (2022), 4–12
Citation in format AMSBIB
\Bibitem{AloSou22}
\by Baghdadi~Aloui, Jihad~Souissi
\paper Bessel polynomials and some connection formulas in terms of the action of linear differential operators
\jour Ural Math. J.
\yr 2022
\vol 8
\issue 2
\pages 4--12
\mathnet{http://mi.mathnet.ru/umj168}
\crossref{https://doi.org/10.15826/umj.2022.2.001}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4527687}
\elib{https://elibrary.ru/item.asp?id=50043138}
\edn{https://elibrary.ru/LEDWKC}
Linking options:
  • https://www.mathnet.ru/eng/umj168
  • https://www.mathnet.ru/eng/umj/v8/i2/p4
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :54
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024