Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2022, Volume 8, Issue 1, Pages 136–144
DOI: https://doi.org/10.15826/umj.2022.1.012
(Mi umj167)
 

This article is cited in 1 scientific paper (total in 1 paper)

Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time

Sergey V. Zakharov

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (145 kB) Citations (1)
References:
Abstract: The solution of the Cauchy problem for the vector Burgers equation with a small parameter of dissipation $\varepsilon$ in the $4$-dimensional space-time is studied:
$$ \mathbf{u}_t + (\mathbf{u}\nabla) \mathbf{u} = \varepsilon \triangle \mathbf{u}, \quad u_{\nu} (\mathbf{x}, -1, \varepsilon) = - x_{\nu} + 4^{-\nu}(\nu + 1) x_{\nu}^{2\nu + 1}, $$
With the help of the ColeHopf transform $\mathbf{u} = - 2 \varepsilon \nabla \ln H$, the exact solution and its leading asymptotic approximation, depending on six space-time scales, near a singular point are found. A formula for the growth of partial derivatives of the components of the vector field $\mathbf{u}$ on the time interval from the initial moment to the singular point, called the formula of the gradient catastrophe, is established:
$$ \frac{\partial u_{\nu} (0, t, \varepsilon)}{\partial x_{\nu}} = \frac{1}{t} \left[ 1 + O \left( \varepsilon |t|^{- 1 - 1/\nu} \right) \right]\!, \quad \frac{t}{\varepsilon^{\nu /(\nu + 1)} } \to -\infty, \quad t \to -0. $$
The asymptotics of the solution far from the singular point, involving a multistep reconstruction of the space-time scales, is also obtained:
$$ u_{\nu} (\mathbf{x}, t, \varepsilon) \approx - 2 \left( \frac{t}{\nu + 1} \right)^{1/2\nu} \tanh \left[ \frac{x_{\nu}}{\varepsilon} \left( \frac{t}{\nu + 1} \right)^{1/2\nu} \right]\!, \quad \frac{t}{\varepsilon^{\nu /(\nu + 1)} } \to +\infty. $$
Keywords: vector Burgers equation, cauchy problem, Cole-Hopf transform, singular point, Laplace's method, multiscale asymptotics.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Sergey V. Zakharov, “Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time”, Ural Math. J., 8:1 (2022), 136–144
Citation in format AMSBIB
\Bibitem{Zak22}
\by Sergey~V.~Zakharov
\paper Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time
\jour Ural Math. J.
\yr 2022
\vol 8
\issue 1
\pages 136--144
\mathnet{http://mi.mathnet.ru/umj167}
\crossref{https://doi.org/10.15826/umj.2022.1.012}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4460033}
\elib{https://elibrary.ru/item.asp?id=49240250}
Linking options:
  • https://www.mathnet.ru/eng/umj167
  • https://www.mathnet.ru/eng/umj/v8/i1/p136
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024