Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2020, Volume 6, Issue 2, Pages 87–94
DOI: https://doi.org/10.15826/umj.2020.2.009
(Mi umj129)
 

Inequalities for algebraic polynomials on an ellipse

Tatiana M. Nikiforovaab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: The paper presents new solutions to two classical problems of approximation theory. The first problem is to find the polynomial that deviates least from zero on an ellipse. The second one is to find the exact upper bound of the uniform norm on an ellipse with foci $\pm 1$ of the derivative of an algebraic polynomial with real coefficients normalized on the segment $[- 1,1]$.
Keywords: polynomial, Chebyshev polynomials, ellipse, segment, derivative of a polynomial, uniform norm.
Funding agency Grant number
Ural Mathematical Center
The work was performed as a part of research conducted in the Ural Mathematical Center.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Tatiana M. Nikiforova, “Inequalities for algebraic polynomials on an ellipse”, Ural Math. J., 6:2 (2020), 87–94
Citation in format AMSBIB
\Bibitem{Nik20}
\by Tatiana~M.~Nikiforova
\paper Inequalities for algebraic polynomials on an ellipse
\jour Ural Math. J.
\yr 2020
\vol 6
\issue 2
\pages 87--94
\mathnet{http://mi.mathnet.ru/umj129}
\crossref{https://doi.org/10.15826/umj.2020.2.009}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR4194017}
\elib{https://elibrary.ru/item.asp?id=44611153}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099554245}
Linking options:
  • https://www.mathnet.ru/eng/umj129
  • https://www.mathnet.ru/eng/umj/v6/i2/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024