Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2020, Volume 6, Issue 2, Pages 25–37
DOI: https://doi.org/10.15826/umj.2020.2.003
(Mi umj123)
 

Generalized order $(\alpha ,\beta)$ oriented some growth properties of composite entire functions

Tanmay Biswasa, Chinmay Biswasb

a Rajbari, Rabindrapally, R.N. Tagore Road, P.O.-Krishnagar, Dist-Nadia, PIN-741101, West Bengal, India
b Department of Mathematics, Nabadwip Vidyasagar College, Nabadwip, Dist.-Nadia, PIN-741302, West Bengal, India
References:
Abstract: In this paper we establish some results relating to the growths of composition of two entire functions with their corresponding left and right factors on the basis of their generalized order $(\alpha ,\beta )$ and generalized lower order $(\alpha ,\beta )$ where $\alpha $ and $\beta $ are continuous non-negative functions on $(-\infty ,+\infty )$.
Keywords: entire function, growth, composition, generalized order $(\alpha,\beta )$, generalized lower order $(\alpha,\beta )$.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Tanmay Biswas, Chinmay Biswas, “Generalized order $(\alpha ,\beta)$ oriented some growth properties of composite entire functions”, Ural Math. J., 6:2 (2020), 25–37
Citation in format AMSBIB
\Bibitem{BisBis20}
\by Tanmay~Biswas, Chinmay~Biswas
\paper Generalized order $(\alpha ,\beta)$ oriented some growth properties of composite entire functions
\jour Ural Math. J.
\yr 2020
\vol 6
\issue 2
\pages 25--37
\mathnet{http://mi.mathnet.ru/umj123}
\crossref{https://doi.org/10.15826/umj.2020.2.003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR4194011}
\elib{https://elibrary.ru/item.asp?id=44611147}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099561981}
Linking options:
  • https://www.mathnet.ru/eng/umj123
  • https://www.mathnet.ru/eng/umj/v6/i2/p25
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:99
    Full-text PDF :108
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024