Loading [MathJax]/jax/output/SVG/config.js
Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2020, Volume 6, Issue 1, Pages 168–175
DOI: https://doi.org/10.15826/umj.2020.1.014
(Mi umj120)
 

Moment problems in weighted $L^2$ spaces on the real line

Elias Zikkos

Khalifa University
References:
Abstract: For a class of sets with multiple terms
$$ \{\lambda_n,\mu_n\}_{n=1}^{\infty}:=\{\underbrace{\lambda_1,\lambda_1,\dots,\lambda_1}_{\mu_1 - times}, \underbrace{\lambda_2,\lambda_2,\dots,\lambda_2}_{\mu_2 - times},\dots, \underbrace{\lambda_k,\lambda_k,\dots,\lambda_k}_{\mu_k - times},\dots\}, $$
having density $d$ counting multiplicities, and a doubly-indexed sequence of non-zero complex numbers\linebreak $\{d_{n,k}:\, n\in\mathbb{N},\, k=0,1,\dots ,\mu_n-1\} $ satisfying certain growth conditions, we consider a moment problem of the form
$$ \int_{-\infty}^{\infty}e^{-2w(t)}t^k e^{\lambda_n t}f(t)\, dt=d_{n,k},\quad \forall\,\, n\in\mathbb{N}\quad \text{and}\quad k=0,1,2,\dots, \mu_n-1, $$
in weighted $L^2 (-\infty, \infty)$ spaces. We obtain a solution $f$ which extends analytically as an entire function, admitting a Taylor-Dirichlet series representation
$$ f(z)=\sum_{n=1}^{\infty}\Big(\sum_{k=0}^{\mu_n-1}c_{n,k} z^k\Big) e^{\lambda_n z},\quad c_{n,k}\in \mathbb{C},\quad\forall\,\, z\in \mathbb{C}. $$
The proof depends on our previous work where we characterized the closed span of the exponential system $\{t^k e^{\lambda_n t}:\, n\in\mathbb{N},\,\, k=0,1,2,\dots,\mu_n-1\}$ in weighted $L^2 (-\infty, \infty)$ spaces, and also derived a sharp upper bound for the norm of elements of a biorthogonal sequence to the exponential system. The proof also utilizes notions from Non-Harmonic Fourier series such as Bessel and Riesz–Fischer sequences.
Keywords: Moment problems, Exponential systems, Biorthogonal families, Weighted Banach spaces, Bessel and Riesz–Fischer sequences.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Elias Zikkos, “Moment problems in weighted $L^2$ spaces on the real line”, Ural Math. J., 6:1 (2020), 168–175
Citation in format AMSBIB
\Bibitem{Zik20}
\by Elias~Zikkos
\paper Moment problems in weighted $L^2$ spaces on the real line
\jour Ural Math. J.
\yr 2020
\vol 6
\issue 1
\pages 168--175
\mathnet{http://mi.mathnet.ru/umj120}
\crossref{https://doi.org/10.15826/umj.2020.1.014}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR4128769}
\zmath{https://zbmath.org/?q=an:1451.30071}
\elib{https://elibrary.ru/item.asp?id=43793633}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088988291}
Linking options:
  • https://www.mathnet.ru/eng/umj120
  • https://www.mathnet.ru/eng/umj/v6/i1/p168
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:161
    Full-text PDF :53
    References:18
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025