Abstract:
Let G=(V,E) be a simple graph. A set S⊆V is a dominating set if every vertex in V∖S is adjacent to a vertex in S. The domination number of a graph G, denoted by γ(G) is the minimum cardinality of a dominating set of G. A set D⊆E is an edge dominating set if every edge in E∖D is adjacent to an edge in D. The edge domination number of a graph G, denoted by γ′(G) is the minimum cardinality of an edge dominating set of G. We characterize trees with domination number equal to twice edge domination number.
\Bibitem{SenVenKum20}
\by B.~Senthilkumar, Ya.~B.~Venkatakrishnan, N.~Kumar
\paper Domination and edge domination in trees
\jour Ural Math. J.
\yr 2020
\vol 6
\issue 1
\pages 147--152
\mathnet{http://mi.mathnet.ru/umj118}
\crossref{https://doi.org/10.15826/umj.2020.1.012}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR4128767}
\zmath{https://zbmath.org/?q=an:1448.05155}
\elib{https://elibrary.ru/item.asp?id=43793631}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089121586}
Linking options:
https://www.mathnet.ru/eng/umj118
https://www.mathnet.ru/eng/umj/v6/i1/p147
This publication is cited in the following 1 articles:
Zhuo Pan, Peng Pan, Chongshan Tie, “On the Relation Between the Domination Number and Edge Domination Number of Trees and Claw-Free Cubic Graphs”, Mathematics, 13:3 (2025), 534