Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2024, Volume 16, Issue 2, Pages 1–14
DOI: https://doi.org/10.13108/2024-16-2-1
(Mi ufa689)
 

On embedding into Lorentz spaces (a distant case)

A. T. Baidaulet, K. M. Suleimenov

L.N. Gumilyov Eurasian National University, Kazhymukan str. 13, 010000, Astana, Kazakhstan
References:
Abstract: In the work we study an upper bound for a non–increasing non–negative function in the space $L^{p}(0,1)$ by the modulus of continuity of a variable increment $\omega_{p,\alpha,\psi}(f,\delta)$. We show that for the increment of the function of form $f(x)-f(x+hx^{\alpha}\psi(x))$ in the bound the modulus of continuity casts into the form $\omega_{p,\alpha,\psi}\left(f,\frac{\delta}{\delta^{\alpha}\psi\left(\frac{1}{\delta}\right)}\right)$. We also study the embedding $\tilde H_{p,\alpha,\psi}^\omega \subset L(\mu,\nu)(\mu \not= \nu)$ (a distant case). We obtained necessary and sufficient conditions for the parameters $p$, $\alpha$, $\mu$, $\nu$ and the functions $\psi$, $\omega$ for this embedding.
Keywords: classes of functions, modulus of continuity of variable increment, non–increasing permutation of the function, Lorentz spaces.
Received: 29.04.2023
Document Type: Article
UDC: 517.958
MSC: 34B45, 81Q15
Language: English
Original paper language: Russian
Citation: A. T. Baidaulet, K. M. Suleimenov, “On embedding into Lorentz spaces (a distant case)”, Ufa Math. J., 16:2 (2024), 1–14
Citation in format AMSBIB
\Bibitem{BaiSul24}
\by A.~T.~Baidaulet, K.~M.~Suleimenov
\paper On embedding into Lorentz spaces (a distant case)
\jour Ufa Math. J.
\yr 2024
\vol 16
\issue 2
\pages 1--14
\mathnet{http://mi.mathnet.ru//eng/ufa689}
\crossref{https://doi.org/10.13108/2024-16-2-1}
Linking options:
  • https://www.mathnet.ru/eng/ufa689
  • https://doi.org/10.13108/2024-16-2-1
  • https://www.mathnet.ru/eng/ufa/v16/i2/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024