|
On embedding into Lorentz spaces (a distant case)
A. T. Baidaulet, K. M. Suleimenov L.N. Gumilyov Eurasian National University, Kazhymukan str. 13, 010000, Astana, Kazakhstan
Abstract:
In the work we study an upper bound for a non–increasing non–negative function in the space $L^{p}(0,1)$ by the modulus of continuity of a variable increment $\omega_{p,\alpha,\psi}(f,\delta)$. We show that for the increment of the function of form $f(x)-f(x+hx^{\alpha}\psi(x))$ in the bound the modulus of continuity casts into the form $\omega_{p,\alpha,\psi}\left(f,\frac{\delta}{\delta^{\alpha}\psi\left(\frac{1}{\delta}\right)}\right)$. We also study the embedding $\tilde H_{p,\alpha,\psi}^\omega \subset L(\mu,\nu)(\mu \not= \nu)$ (a distant case). We obtained necessary and sufficient conditions for the parameters $p$, $\alpha$, $\mu$, $\nu$ and the functions $\psi$, $\omega$ for this embedding.
Keywords:
classes of functions, modulus of continuity of variable increment, non–increasing permutation of the function, Lorentz spaces.
Received: 29.04.2023
Citation:
A. T. Baidaulet, K. M. Suleimenov, “On embedding into Lorentz spaces (a distant case)”, Ufa Math. J., 16:2 (2024), 1–14
Linking options:
https://www.mathnet.ru/eng/ufa689https://doi.org/10.13108/2024-16-2-1 https://www.mathnet.ru/eng/ufa/v16/i2/p3
|
|