Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2023, Volume 15, Issue 1, Pages 34–42
DOI: https://doi.org/10.13108/2023-15-1-34
(Mi ufa644)
 

This article is cited in 3 scientific papers (total in 3 papers)

Partial orders on $\ast$-regular rings

K. K. Kudaybergenovabc, B. O. Nurjanovab

a Insitute of Mathematics named after V.I. Romanovsky of the Academy of Sciences of the Republic of Uzbekistan, Universitetstkaya str. 9, 100174, Tashkent, Uzbekistan
b Karakalpak State University named after Berdakh, Ch. Abdirov str. 1, 230112, Nukus, Uzbekistan
c North Caucaus Center of Mathematical Studies, Vladikavkaz Scientific Center of RAS, Markus str. 22, 362027, Vladikavkaz, Russia
References:
Abstract: In this work we consider some new partial orders on $\ast$-regular rings. Let $\mathcal{A}$ be a $\ast$-regular ring, $P(\mathcal{A})$ be the lattice of all projectors in $\mathcal{A}$ and $\mu$ be a sharp normal normalized measure on $P(\mathcal{A}).$ Suppose that $(\mathcal{A}, \rho)$ is a complete metric $\ast$-ring with respect to the rank metric $\rho$ on $\mathcal{A}$ defined as $\rho(x, y) = \mu(l(x-y))=\mu (r(x-y))$, $x, y \in \mathcal{A}$, where $l(a)$, $r(a)$ is respectively the left and right support of an element $a$. On $\mathcal{A}$ we define the following three partial orders: $a \prec_s b \Longleftrightarrow b = a + c$, $a \perp c;$ $a \prec_l b \Longleftrightarrow l(a) b = a;$ $ a \prec_r b \Longleftrightarrow br (a) = a,$ $a\perp c$ means algebraic orthogonality, that is, $ac = ca = a^\ast c = ac^\ast = 0.$ We prove that the order topologies associated with these partial orders are stronger than the topology generated by the metric $\rho.$ We consider the restrictions of these partial orders on the subsets of projectors, unitary operators and partial isometries of $\ast$-regular algebra $\mathcal{A}.$ In particular, we show that these three orders coincide with the usual order $\le$ on the lattice of the projectors of $\ast$-regular algebra. We also show that the ring isomorphisms of $\ast$-regular rings preserve partial orders $\prec_l$ and $\prec_r$.
Keywords: partial order, $\ast$-regular ring, von Neumann algebra, order topology.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-896
The research by the first author was partially supported by the Ministry of Science and Higher Education of Russian Federation, agreement no. 075-02-2022-896.
Received: 25.12.2021
Bibliographic databases:
Document Type: Article
UDC: 517.986.2
MSC: 46L10, 46L51, 16E50
Language: English
Original paper language: Russian
Citation: K. K. Kudaybergenov, B. O. Nurjanov, “Partial orders on $\ast$-regular rings”, Ufa Math. J., 15:1 (2023), 34–42
Citation in format AMSBIB
\Bibitem{KudNur23}
\by K.~K.~Kudaybergenov, B.~O.~Nurjanov
\paper Partial orders on $\ast$-regular rings
\jour Ufa Math. J.
\yr 2023
\vol 15
\issue 1
\pages 34--42
\mathnet{http://mi.mathnet.ru//eng/ufa644}
\crossref{https://doi.org/10.13108/2023-15-1-34}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4575920}
Linking options:
  • https://www.mathnet.ru/eng/ufa644
  • https://doi.org/10.13108/2023-15-1-34
  • https://www.mathnet.ru/eng/ufa/v15/i1/p35
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:121
    Russian version PDF:30
    English version PDF:48
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024