Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2020, Volume 12, Issue 4, Pages 41–54
DOI: https://doi.org/10.13108/2020-12-4-41
(Mi ufa542)
 

This article is cited in 8 scientific papers (total in 8 papers)

On covering mappings in generalized metric spaces in studying implicit differential equations

E. S. Zhukovskiyab, W. Merchelaca

a Derzhavin Tambov State University, Internatsionalnya str. 33, 392000, Tambov, Russia
b Trapeznikov Institute of Control Sciences, Profsoyuznaya str. 65, 117997, Moscow, Russia
c Laboratoire des Mathématiques Appliquées et Modélisation, Université 8 Mai 1945 Guelma, B.P. 401, 24000, Guelma, Algeria
References:
Abstract: Let on a set $X\neq \emptyset$ a metric $\rho :X\times X \to [0,\infty]$ be defined, while on $Y\neq\emptyset$ a distance $d :Y\times Y \to [0,\infty],$ be given, which satisfies only the identity axiom. We define the notion of covering and of Lipschitz property for the mappings $X\to Y$. We formulate conditions ensuring the existence of solutions $x\in X$ to equations of form $F(x,x)=y,$ $y \in Y,$ with a mapping $F:X\times X \to Y,$ being covering in one variable and Lipschitz in the other. These conditions are employed for studying the solvability of a functional equation with a deviation variable and of a Cauchy problem for an implicit differential equation. In order to do this, on the space $S$ of Lebesgue measurable functions $z:[0,1]\to \mathbb{R}$ we define the distance
\begin{equation*} d (z_1,z_2)=\mathrm{vrai}\sup_{t\in[0,1]}\theta(z_1(t),z_2(t)),\qquad z_1,z_2\in S, \end{equation*}
where each continuous function $\theta:\mathbb{R}\times \mathbb{R} \to [0,\infty) $ satisfies $\theta(z_1,z_2)=0$ if and only if $z_1=z_2.$
Keywords: covering mapping, metric space, functional equation with a deviating variable, ordinary differential equation, existence of solution.
Funding agency Grant number
Russian Science Foundation 20-11-20131
Russian Foundation for Basic Research 20-04-60524_вирусы
The research is financially supported by Russian Science Foundation (project no. 20-04-60524_virusy). Theorem 3.1, Proposition 4 and Corollary 2 are obtained by the first author in Trapeznikov Institute of Control Sciences under the support of Russian Science Foundation (project no. 20-11-20131).
Received: 23.03.2020
Bibliographic databases:
Document Type: Article
UDC: 517.988.63, 517.922, 515.124.4
MSC: 34A09, 47J05, 54E40
Language: English
Original paper language: Russian
Citation: E. S. Zhukovskiy, W. Merchela, “On covering mappings in generalized metric spaces in studying implicit differential equations”, Ufa Math. J., 12:4 (2020), 41–54
Citation in format AMSBIB
\Bibitem{ZhuMer20}
\by E.~S.~Zhukovskiy, W.~Merchela
\paper On covering mappings in generalized metric spaces in studying implicit differential equations
\jour Ufa Math. J.
\yr 2020
\vol 12
\issue 4
\pages 41--54
\mathnet{http://mi.mathnet.ru/eng/ufa542}
\crossref{https://doi.org/10.13108/2020-12-4-41}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000607979900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100747232}
Linking options:
  • https://www.mathnet.ru/eng/ufa542
  • https://doi.org/10.13108/2020-12-4-41
  • https://www.mathnet.ru/eng/ufa/v12/i4/p42
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:424
    Russian version PDF:111
    English version PDF:79
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026