|
This article is cited in 8 scientific papers (total in 8 papers)
On covering mappings in generalized metric spaces in studying implicit differential equations
E. S. Zhukovskiyab, W. Merchelaca a Derzhavin Tambov State University,
Internatsionalnya str. 33,
392000, Tambov, Russia
b Trapeznikov Institute of Control Sciences,
Profsoyuznaya str. 65,
117997, Moscow, Russia
c Laboratoire des Mathématiques Appliquées et Modélisation, Université 8 Mai 1945 Guelma,
B.P. 401, 24000, Guelma, Algeria
Abstract:
Let on a set $X\neq \emptyset$ a metric $\rho :X\times X \to [0,\infty]$ be defined, while on $Y\neq\emptyset$ a distance $d :Y\times Y \to [0,\infty],$ be given, which satisfies only the identity axiom. We define the notion of covering and of Lipschitz property for the mappings $X\to Y$. We formulate conditions ensuring the existence of solutions $x\in X$ to equations of form $F(x,x)=y,$ $y \in Y,$ with a mapping $F:X\times X \to Y,$ being covering in one variable and Lipschitz in the other. These conditions are employed for studying the solvability of a functional equation with a deviation variable and of a Cauchy problem for an implicit differential equation. In order to do this, on the space $S$ of Lebesgue measurable functions
$z:[0,1]\to \mathbb{R}$ we define the distance
\begin{equation*}
d (z_1,z_2)=\mathrm{vrai}\sup_{t\in[0,1]}\theta(z_1(t),z_2(t)),\qquad z_1,z_2\in S,
\end{equation*}
where each continuous function $\theta:\mathbb{R}\times \mathbb{R} \to [0,\infty) $
satisfies $\theta(z_1,z_2)=0$ if and only if $z_1=z_2.$
Keywords:
covering mapping, metric space, functional equation with a deviating variable, ordinary differential equation, existence of solution.
Received: 23.03.2020
Citation:
E. S. Zhukovskiy, W. Merchela, “On covering mappings in generalized metric spaces in studying implicit differential equations”, Ufa Math. J., 12:4 (2020), 41–54
Linking options:
https://www.mathnet.ru/eng/ufa542https://doi.org/10.13108/2020-12-4-41 https://www.mathnet.ru/eng/ufa/v12/i4/p42
|
| Statistics & downloads: |
| Abstract page: | 424 | | Russian version PDF: | 111 | | English version PDF: | 79 | | References: | 61 |
|