Abstract:
This paper considers associative multiplications of cubic matrices generalizing the ordinary multiplication of matrices. Cubic analogues of stochastic matrices are introduced and their probabilistic interpretations are given. Cubic stationary stochastic matrices are described and the proposition on convergence of a cubic stochastic matrix to a stationary one is proved. We introduce the notion of the Markov interaction process which generalizes the notion of a Markov process and show that the notion of ergodicity of such a process is naturally related with the associative multiplication of cubic matrices.
Citation:
V. M. Maksimov, “Cubic stochastic matrices and their probability interpretation”, Teor. Veroyatnost. i Primenen., 41:1 (1996), 89–106; Theory Probab. Appl., 41:1 (1997), 55–69
\Bibitem{Mak96}
\by V.~M.~Maksimov
\paper Cubic stochastic matrices and their probability interpretation
\jour Teor. Veroyatnost. i Primenen.
\yr 1996
\vol 41
\issue 1
\pages 89--106
\mathnet{http://mi.mathnet.ru/tvp2777}
\crossref{https://doi.org/10.4213/tvp2777}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1404897}
\zmath{https://zbmath.org/?q=an:0887.15021}
\transl
\jour Theory Probab. Appl.
\yr 1997
\vol 41
\issue 1
\pages 55--69
\crossref{https://doi.org/10.1137/TPRBAU000041000001000055000001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997WQ28100004}
Linking options:
https://www.mathnet.ru/eng/tvp2777
https://doi.org/10.4213/tvp2777
https://www.mathnet.ru/eng/tvp/v41/i1/p89
This publication is cited in the following 24 articles:
Paniello I., “A Coalgebraic Structure on Bisexual Populations”, Algebr. Represent. Theory, 24:4 (2021), 1053–1069
Paniello I., “In-Evolution Operators in Genetic Coalgebras”, Linear Alg. Appl., 614:SI (2021), 197–207
Mamurov B.J., Rozikov U.A., Xudayarov S.S., “Quadratic Stochastic Processes of Type (SIGMA Vertical Bar Mu)”, Markov Process. Relat. Fields, 26:5 (2020), 915–933
Imomkulov A., Velasco M.V., “Chains of Three-Dimensional Evolution Algebras: a Description”, Filomat, 34:10 (2020), 3175–3190
Casas J.M., Ladra M., Rozikov U.A., “Markov Processes of Cubic Stochastic Matrices: Quadratic Stochastic Processes”, Linear Alg. Appl., 575 (2019), 273–298
Paniello I., “Evolution Coalgebras”, Linear Multilinear Algebra, 67:8 (2019), 1539–1553
Ladra M., Rozikov U.A., “Flow of finite-dimensional algebras”, J. Algebra, 470 (2017), 263–288
Paniello I., “On evolution operators of genetic coalgebras”, J. Math. Biol., 74:1-2 (2017), 149–168
Ladra M., Rozikov U.A., “Construction of Flows of Finite-Dimensional Algebras”, J. Algebra, 492 (2017), 475–489
Paniello I., “Genetic Coalgebras and Their Cubic Stochastic Matrices”, J. Algebra. Appl., 16:12 (2017), 1750239
Paniello I., “Backwards Genetic Inheritance Through Coalgebra-Graphs”, Linear Multilinear Algebra, 65:5 (2017), 943–961
Ladra M., Rozikov U.A., “Algebras of Cubic Matrices”, Linear Multilinear Algebra, 65:7 (2017), 1316–1328
M. Ladra, U.A. Rozikov, “Construction of flows of finite-dimensional algebras”, Journal of Algebra, 492 (2017), 475
Farrukh Mukhamedov, Nasir Ganikhodjaev, Lecture Notes in Mathematics, 2133, Quantum Quadratic Operators and Processes, 2015, 7
Paniello I., “Marginal Distributions of Genetic Coalgebras”, J. Math. Biol., 68:5 (2014), 1071–1087
Farrukh Mukhamedov, Abduaziz Abduganiev, International Conference on Mathematical Sciences and Statistics 2013, 2014, 175
Mukhamedov F., “On Pure Quasi-Quantum Quadratic Operators of M-2(C)”, Open Syst. Inf. Dyn., 20:4 (2013), 1350018
Mukhamedov F., Akin H., Temir S., Abduganiev A., “On quantum quadratic operators of M-2(C) and their dynamics”, J Math Anal Appl, 376:2 (2011), 641–655
Paniello I., “Stochastic matrices arising from genetic inheritance”, Linear Algebra Appl, 434:3 (2011), 791–800
Ganikhodzhaev R., Mukhamedov F., Rozikov U., “Quadratic Stochastic Operators and Processes: Results and Open Problems”, Infin Dimens Anal Quantum Probab Relat Top, 14:2 (2011), 279–335