Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 128, Number 1, Pages 133–144
DOI: https://doi.org/10.4213/tmf487
(Mi tmf487)
 

This article is cited in 6 scientific papers (total in 6 papers)

Integration of the Gauss–Codazzi Equations

V. E. Zakharov

L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
Full-text PDF (190 kB) Citations (6)
References:
Abstract: The Gauss–Codazzi equations imposed on the elements of the first and the second quadratic forms of a surface embedded in $\mathbb R^3$ are integrable by the dressing method. This method allows constructing classes of Combescure-equivalent surfaces with the same “rotation coefficients”. Each equivalence class is defined by a function of two variables (“master function of a surface”). Each class of Combescure-equivalent surfaces includes the sphere. Different classes of surfaces define different systems of orthogonal coordinates of the sphere. The simplest class (with the master function zero) corresponds to the standard spherical coordinates.
English version:
Theoretical and Mathematical Physics, 2001, Volume 128, Issue 1, Pages 946–956
DOI: https://doi.org/10.1023/A:1010458318314
Bibliographic databases:
Language: Russian
Citation: V. E. Zakharov, “Integration of the Gauss–Codazzi Equations”, TMF, 128:1 (2001), 133–144; Theoret. and Math. Phys., 128:1 (2001), 946–956
Citation in format AMSBIB
\Bibitem{Zak01}
\by V.~E.~Zakharov
\paper Integration of the Gauss--Codazzi Equations
\jour TMF
\yr 2001
\vol 128
\issue 1
\pages 133--144
\mathnet{http://mi.mathnet.ru/tmf487}
\crossref{https://doi.org/10.4213/tmf487}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1904050}
\zmath{https://zbmath.org/?q=an:0998.53004}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 128
\issue 1
\pages 946--956
\crossref{https://doi.org/10.1023/A:1010458318314}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000171083700011}
Linking options:
  • https://www.mathnet.ru/eng/tmf487
  • https://doi.org/10.4213/tmf487
  • https://www.mathnet.ru/eng/tmf/v128/i1/p133
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025