Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1970, Volume 4, Number 3, Pages 328–340 (Mi tmf4158)  

This article is cited in 6 scientific papers (total in 6 papers)

Representations of the Lorentz group and generalization of helicity states

Ya. A. Smorodinskii, M. Khusar
References:
Abstract: The principal series of unitary representations of the Lorentz group is obtained by complexification of the three-dimensional group of rotations and by the solution of the eigenvalue equation for the Casimir operators. The representation obtained can be expressed simply in terms of DD functions (of the first and second kind) of the group of rotations. The harmonic analysis of the functions on the group is discussed. Spherical functions on a two-dimensional complex sphere are constructed.
Received: 07.10.1969
English version:
Theoretical and Mathematical Physics, 1970, Volume 4, Issue 3, Pages 867–876
DOI: https://doi.org/10.1007/BF01038301
Bibliographic databases:
Language: Russian
Citation: Ya. A. Smorodinskii, M. Khusar, “Representations of the Lorentz group and generalization of helicity states”, TMF, 4:3 (1970), 328–340; Theoret. and Math. Phys., 4:3 (1970), 867–876
Citation in format AMSBIB
\Bibitem{SmoKhu70}
\by Ya.~A.~Smorodinskii, M.~Khusar
\paper Representations of the Lorentz group and generalization of helicity states
\jour TMF
\yr 1970
\vol 4
\issue 3
\pages 328--340
\mathnet{http://mi.mathnet.ru/tmf4158}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=462276}
\zmath{https://zbmath.org/?q=an:0201.58404}
\transl
\jour Theoret. and Math. Phys.
\yr 1970
\vol 4
\issue 3
\pages 867--876
\crossref{https://doi.org/10.1007/BF01038301}
Linking options:
  • https://www.mathnet.ru/eng/tmf4158
  • https://www.mathnet.ru/eng/tmf/v4/i3/p328
  • This publication is cited in the following 6 articles:
    1. Giorgio Immirzi, “A note on the spinor construction of spin foam amplitudes”, Class. Quantum Grav., 31:9 (2014), 095016  crossref
    2. Sergey N. Filippov, Vladimir I. Man'ko, “Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics”, J Russ Laser Res, 31:3 (2010), 211  crossref
    3. K. N. Joshi, B. S. Rajput, “Addition of complex angular momentum operators”, Journal of Mathematical Physics, 21:7 (1980), 1579  crossref
    4. M. K. F. Wong, Hsin-Yang Yeh, “Boost matrix elements and Clebsch–Gordan coefficients of the homogeneous Lorentz group”, Journal of Mathematical Physics, 18:9 (1977), 1768  crossref
    5. E. G. Kalnins, “Unitary Representations of the Homogeneous Lorentz Group in an O(1,1)⊗O(2) Basis and Some Applications to Relativistic Equations”, Journal of Mathematical Physics, 13:9 (1972), 1304  crossref
    6. A. A. Izmest'ev, “Wave fields of beam type and spatial quantization of the angular momentum”, Theoret. and Math. Phys., 7:3 (1971), 591–599  mathnet  crossref  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:578
    Full-text PDF :299
    References:78
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025