Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2006, Volume 12, Number 1, Pages 25–47 (Mi timm132)  

This article is cited in 5 scientific papers (total in 5 papers)

On the fall of a heavy rigid body in an ideal fluid

A. V. Borisov, V. V. Kozlov, I. S. Mamaev
References:
Abstract: We consider a problem about the motion of a heavy rigid body in an unbounded volume of an ideal irrotational incompressible fluid. This problem generalizes a classical Kirchhoff problem describing the inertial motion of a rigid body in a fluid. We study different special statements of the problem: the plane motion and the motion of an axially symmetric body. In the general case of motion of a rigid body, we study the stability of partial solutions and point out limiting behaviors of the motion when the time increases infinitely. Using numerical computations on the plane of initial conditions, we construct domains corresponding to different types of the asymptotic behavior. We establish the fractal nature of the boundary separating these domains.
Received: 25.11.2005
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2006, Volume 12, Issue 1, Pages S24–S47
DOI: https://doi.org/10.1134/S008154380605004X
Bibliographic databases:
Document Type: Article
UDC: 531.3+532.5
Language: Russian
Citation: A. V. Borisov, V. V. Kozlov, I. S. Mamaev, “On the fall of a heavy rigid body in an ideal fluid”, Dynamical systems: modeling, optimization, and control, Trudy Inst. Mat. i Mekh. UrO RAN, 12, no. 1, 2006, 25–47; Proc. Steklov Inst. Math. (Suppl.), 12, suppl. 1 (2006), S24–S47
Citation in format AMSBIB
\Bibitem{BorKozMam06}
\by A.~V.~Borisov, V.~V.~Kozlov, I.~S.~Mamaev
\paper On the fall of a~heavy rigid body in an ideal fluid
\inbook Dynamical systems: modeling, optimization, and control
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2006
\vol 12
\issue 1
\pages 25--47
\mathnet{http://mi.mathnet.ru/timm132}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2246985}
\zmath{https://zbmath.org/?q=an:1119.70009}
\elib{https://elibrary.ru/item.asp?id=12040717}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2006
\vol 12
\issue , suppl. 1
\pages S24--S47
\crossref{https://doi.org/10.1134/S008154380605004X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746894804}
Linking options:
  • https://www.mathnet.ru/eng/timm132
  • https://www.mathnet.ru/eng/timm/v12/i1/p25
  • This publication is cited in the following 5 articles:
    1. S. P. Kuznetsov, “Dvizhenie padayuschei plastiny v zhidkosti: konechnomernye modeli i fenomeny slozhnoi nelineinoi dinamiki”, Nelineinaya dinam., 11:1 (2015), 3–49  mathnet  elib
    2. Kolomenskiy D., Schneider K., “Numerical simulations of falling leaves using a pseudo-spectral method with volume penalization”, Theor. Comput. Fluid Dyn., 24:1-4 (2010), 169–173  crossref  zmath  adsnasa  isi  elib  scopus
    3. Borisov A.V., Mamayev I.S., “The dynamics of a Chaplygin sleigh”, J. Appl. Math. Mech., 73:2 (2009), 156–161  crossref  mathscinet  zmath  isi  elib  elib  scopus
    4. Dmitry Kolomenskiy, Kai Schneider, Iutam Bookseries, 20, 150 Years of Vortex Dynamics, 2009, 185  crossref
    5. Borisov A.V., Kozlov V.V., Mamaev I.S., “Asymptotic stability and associated problems of dynamics of falling rigid body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:651
    Full-text PDF :205
    References:122
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025