Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2006, Volume 14, Number 2, Pages 80–85 (Mi timb128)  

A polynomial time algorithm for checking $2$-chromaticity for recursively constructed $k$-terminal hypergraphs

V. V. Lepin

Institute of Mathematics of the National Academy of Sciences of Belarus
References:
Abstract: It is shown that for $k$-terminal recursively constructed hypergraphs the $2$-colorability problem: for a given hypergraph $H$ to find out whether there exists a coloring $f\colon V(H)\to\{1,2\}$ such that no edge of $H$ is monochromatic, can be solved in $O(n^3)$ time.
Received: 30.12.2005
Document Type: Article
UDC: 519.1
Language: Russian
Citation: V. V. Lepin, “A polynomial time algorithm for checking $2$-chromaticity for recursively constructed $k$-terminal hypergraphs”, Tr. Inst. Mat., 14:2 (2006), 80–85
Citation in format AMSBIB
\Bibitem{Lep06}
\by V.~V.~Lepin
\paper A polynomial time algorithm for checking $2$-chromaticity for recursively constructed $k$-terminal hypergraphs
\jour Tr. Inst. Mat.
\yr 2006
\vol 14
\issue 2
\pages 80--85
\mathnet{http://mi.mathnet.ru/timb128}
Linking options:
  • https://www.mathnet.ru/eng/timb128
  • https://www.mathnet.ru/eng/timb/v14/i2/p80
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
    Statistics & downloads:
    Abstract page:266
    Full-text PDF :119
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026