Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2022, Volume 213, Issue 10, Pages 1470–1486
DOI: https://doi.org/10.4213/sm9742e
(Mi sm9742)
 

The convex hull and the Carathéodory number of a set in terms of the metric projection operator

K. S. Shklyaevab

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
References:
Abstract: We prove that each point of the convex hull of a compact set M in a smooth Banach space X can be approximated arbitrarily well by convex combinations of best approximants from M to x (values of the metric projection operator PM(x)), where xX. As a corollary, we show that the Carathéodory number of a compact set MX with at most k-valued metric projection PM is majorized by k, that is, each point in the convex hull of M lies in the convex hull of at most k points of M.
Bibliography: 26 titles.
Keywords: metric projection, convex hull, Banach space, smoothness, Minkowski functional, Carathéodory number.
Funding agency Grant number
Foundation for the Development of Theoretical Physics and Mathematics BASIS
Ministry of Education and Science of the Russian Federation 14.W03.31.0031
Theorems 1–3 were proved with support of the Theoretical Physics and Mathematics Advancement Foundation “BASIS”; Theorems 4 and 5 were proved with the support of a grant for state support of scientific research conducted under the auspices of leading scientists of the Government of the Russian Federation (agreement no. 14.W03.31.0031).
Received: 23.02.2022 and 11.05.2022
Bibliographic databases:
Document Type: Article
MSC: Primary 41A65; Secondary 52A35, 52A20
Language: English
Original paper language: Russian

§ 1. Introduction

Let (X,) be a real Banach space. The distance of a point xX to a set MX is defined by

d(x,M)=infyMxy.
The closed and open balls, and the sphere in X with centre xX and radius r>0 are denoted by ¯B(x,r), B(x,r) and S(x,r), respectively. We let riM denote the relative interior of a set MX, that is, the interior of M in its affine hull
affM:={ki=1λixi:kN,xiM,λiR,ki=1λi=1}.
The metric projection of a point x onto a set M is defined by
PM(x)={yM:xy=d(x,M)}.
We say that M is a Chebyshev set if PM(x) is a singleton for each xX. The convex hull of a set M is denoted by convM.

The problem of the convexity of Chebyshev sets in concrete and abstract normed spaces has been studied extensively (see, for example, Efimov and Stechkin [1], Klee [2], [3], Berdyshev [4], Brø ndsted [5], Brown [6], [7], Vlasov [8], Balaganskii and Vlasov [9], Tsar’kov [10], [11], and Alimov [12], [13]). The investigations of the geometry of Chebyshev sets in finite-dimensional normed linear spaces date back to Bunt [14], Mann [15] and Motzkin [16], [17]. In his thesis [14] (1934) Bunt proved that, in strictly convex finite-dimensional Banach spaces with second-order modulus of smoothness (and, in particular, in finite-dimensional Euclidean spaces), each Chebyshev set is convex; he also showed that in two-dimensional spaces the condition of strict convexity can be dropped. In particular, this result implies that, in finite-dimensional Euclidean spaces Rn, the class of Chebyshev sets coincides with the class of convex closed sets. A bit later, Motzkin [16] showed that any Chebyshev set in a two-dimensional normed plane is convex if and only if the space is smooth (a space is smooth if the unit sphere there has a unique support hyperplane at each point). Klee extended Bunt’s and Motzkin’s results in his early papers [2] and [3]: he showed that in any finite-dimensional smooth space every Chebyshev set is convex. Efimov and Stechkin were among the first authors to investigate Chebyshev sets in infinite-dimensional Banach spaces. In particular, they stated the problem of the convexity of Chebyshev sets in (infinite-dimensional) Hilbert spaces.

Open Problem A. Is every Chebyshev set in an infinite-dimensional Hilbert space convex?

For a survey of results for infinite-dimensional spaces, see [9].

As a natural generalization of Chebyshev sets, we consider sets with at most k-valued, nonempty metric projection.

Definition 1. Given a set MX and a natural number k, set

convkM:={ki=1λixi:xiM,λi[0,1],ki=1λi=1}.

Definition 2. The Carathéodory number of a set M is defined as the smallest natural number k such that convkM=convM.

The following Carathéodory convex hull theorem is well known (see [18]): if MRd, then convd+1M=convM, that is, the Carathéodory number of M is at most d+1. Under some additional conditions on a set M the upper estimate of its Carathéodory number can be improved. Results of this type are due to Fenchel (see [10]), Bárány and Karasev (see [20]), and other authors. A detailed account of the available results on the Carathéodory number can be found in [20]. In the present paper we examine the Carathéodory numbers of sets M with at most k-valued metric projection PM. In 2010 Borodin stated the following problem.

Problem A. Prove that in any finite-dimensional smooth space X the Carathéodory number of each closed set MX with at most k-valued metric projection PM is at most k.

Note that for k=1 this claim is valid because each Chebyshev set in a smooth finite-dimensional space is convex. Also note that for k it holds automatically by Carathéodory’s theorem. For k= d=2 Problem A was solved by Flerov [21].

In our paper Problem A is solved under certain constraints on M, for spaces of arbitrary dimension (in particular, for boundedly compact sets M in infinite-dimensional Banach spaces X). In Theorems 15 we present more general results on representations of a point in the convex hull of a set M \subset X as a convex combination of points in the metric projection P_M(x) for some x \in X. Using these results, in Corollaries 14 we derive analogues and extensions of Problem A.

Moreover, with the help of Corollaries 14 we readily obtain sufficient conditions for the existence of a point with at most k-valued metric projection. The corresponding sufficient conditions are as follows: \operatorname{conv}{M} \neq \operatorname{conv}_k{M} in Corollaries 1 and 4, and \overline{\operatorname{conv}{M}} \neq \overline{\operatorname{conv}_k{M}} in Corollaries 2 and 3.

Note that the infinite-dimensional analogue of Problem A for a Hilbert space X, with no constraints on M, includes Open Problem A as a particular case (for k=1).

§ 2. Auxiliary lemmas

In what follows X_d denotes a normed space of dimension d.

Lemma 1. Let a, b \in X_d, r > 0, let a \in B(b,r), and let f\colon \overline{B}(b,r) \to X_d be a continuous mapping such that a \notin [x, f(x)] for all x \in S(b,r). Then there exists a point x_* \in B(b,r) such that f(x_*)=a.

Proof. It can be assumed without loss of generality that b=0 and r=1. Assume that f(x) \neq a for all x \in B(0,1). Since a \notin [x, f(x)] for all x \in S(0,1), and since f is continuous, there exists \tau \in (0,1) such that a \notin [x, f(t x)] for all x \in S(0,1) and all t \in [1-\tau, 1]. Hence
\begin{equation} g(x,t) := \frac{t+\tau-1}{\tau}x+\frac{1-t}{\tau}f(tx) \neq a \end{equation} \tag{1}
for all x \in S(0,1) and all t \in [1-\tau, 1]. Consider the automorphism of the sphere S(0,1):
\begin{equation*} u\colon x \mapsto \frac{x-a}{\| x-a\|}. \end{equation*} \notag
The map \widetilde{f}\colon \overline{B}(0,1) \to S(0,1) defined by
\begin{equation*} \widetilde{f}(tx) := \begin{cases} u^{-1}\biggl( \dfrac{f(tx)-a}{\| f(tx)-a \| }\biggr), &x \in S(0,1),\ t \in [0, 1-\tau), \\ u^{-1}\biggl(\dfrac{g(x,t)-a}{\| g(x,t)-a \| }\biggr), &x \in S(0,1),\ t \in [1-\tau,1], \end{cases} \end{equation*} \notag
is well defined in view of (1). Moreover, for all x \in S(0,1),
\begin{equation*} \frac{g(x,1-\tau)-a}{\| g(x,1-\tau)-a \|}=\frac{f((1-\tau)x)-a}{\| f((1-\tau)x)-a \|}, \qquad \frac{g(x,1)-a}{\| g(x,1)-a\|}=\frac{x-a}{\| x-a\|}. \end{equation*} \notag
Hence \widetilde{f} is continuous and \widetilde{f}|_{S(0,1)} \equiv \mathrm{id}, that is, \widetilde{f} retracts the ball \overline{B}(0,1) onto its boundary S(0,1), which is impossible (see [22], § 38).

Lemma 1 is proved.

Let (X, d_X) and (Y, d_Y) be metric spaces. A set-valued map F\colon X \to 2^Y \setminus \{\varnothing\} is said to be upper semicontinuous at a point x_0 \in X if for each \varepsilon > 0 there exists \delta > 0 such that, for all x \in B(x_0,\delta),

\begin{equation*} F(x) \subset B_\varepsilon(F(x_0)) := \Bigl\{ y \in Y\colon d_Y(y, F(x_0)) := \inf_{z \in F(x_0)}d_Y(y, z) < \varepsilon \Bigr\}. \end{equation*} \notag
The graph of a set-valued mapping F\colon X \to 2^Y \setminus \{\varnothing\} is defined by
\begin{equation*} \Gamma_F := \bigl\{ (x,y)\colon x \in X, \, y \in F(x) \bigr\}; \end{equation*} \notag
it is equipped with the distance d( (x_1, y_1), (x_2, y_2) ) \,{:=} \max (d_X(x_1, x_2), d_Y(y_1, y_2) ). Given a linear space Y, we denote the class of nonempty closed convex subsets of Y by \mathrm{Conv}(Y).

Lemma 2. Let a, b \in X_d, r > 0, let a \in B(b,r), and let F\colon \overline{B}(b,r) \to \mathrm{Conv}(X_d) be an upper semicontinuous mapping such that a \notin \operatorname{conv}(\{x\} \cup F(x)) for all x \in S(b,r). Then a \in F(x_*) for some x_* \in B(b,r).

Proof. It can be assumed without loss of generality that b=0 and r=1. Suppose that a \notin F(x) for all x \in \overline{B}(0,1). Since F is upper semicontinuous, there exists \varepsilon \in (0, (1-\| a \|)/2) such that, for all x \in \overline{B}(0,1) and all y \in \overline{B}(0,1) \setminus B(0, 1-\varepsilon),
\begin{equation} B(a,2\varepsilon) \cap F(x)=\varnothing\quad\text{and} \quad B(a,\varepsilon) \cap \operatorname{conv}(\{y\} \cup F(y))=\varnothing. \end{equation} \tag{2}

Next we require the following result.

Theorem B (see [23], Theorem 1). Let S be a compact metric space, Y be a normed linear space and \Phi\colon S \to \mathrm{Conv}(Y) be an upper semicontinuous mapping. Then for each \varepsilon > 0 there exists a single-valued \varepsilon-approximation of \Phi, that is, a continuous single-valued mapping \varphi\colon S \to \operatorname{conv} \Phi(S) such that the graphs \Gamma_\Phi and \Gamma_\varphi of \Phi and \varphi, respectively, satisfy d^*(\Gamma_\varphi, \Gamma_\Phi):= \sup_{y \in \Gamma_\varphi} d(y, \Gamma_\Phi) < \varepsilon.

By Theorem B there exists a single-valued \varepsilon-approximation f\colon \overline{B}(0,1) \to X of the set-valued mapping F. Since d^* (\Gamma_{f},\Gamma_F) < \varepsilon, by (2) we have

\begin{equation} B(a,\varepsilon) \cap f(\overline{B}(0,1))=\varnothing. \end{equation} \tag{3}
Next we claim that a \notin [y,f(y)] for y \in S(0,1). Indeed, otherwise there exists \lambda \in [0,1] such that
\begin{equation} a=\lambda y+(1-\lambda)f(y). \end{equation} \tag{4}
Since d^* (\Gamma_{f},\Gamma_F) < \varepsilon, there would exist z \in B(y,\varepsilon) \cap \overline{B}(0,1) and w \in B(f(y),\varepsilon) such that w \in F(z). Hence by (4)
\begin{equation*} \bigl\| \lambda z+(1-\lambda)w-a\bigr\| \leqslant \|\lambda(z-y\|+\bigl\| (1-\lambda)(w-f(y)) \bigr\| < \varepsilon, \end{equation*} \notag
that is, B(a,\varepsilon) \cap \operatorname{conv}(\{z\} \cup F(z)) \neq \varnothing, which contradicts (2). So f satisfies the conditions of Lemma 1, and therefore there exists x_* \in B(0,1) such that f(x_*)=a. However, this is impossible by (3).

Lemma 2 is proved.

§ 3. Results for starlike domains

The results in this section are related to combinatorial geometry; they are close to [24] in spirit. Recall that a domain U \subset \mathbb{R}^d is starlike with respect to 0 if \lambda U \subset U for all \lambda \in (0,1) and 0 \in U. Let U be a domain starlike with respect to 0, and let p_u be its Minkowski functional, namely,

\begin{equation*} p_u\colon \mathbb{R}^d \to \mathbb{R}_+, \qquad x \mapsto \sup\bigl\{ \lambda \geqslant 0\colon \lambda x \in U\bigr\}. \end{equation*} \notag

Traces of the following definition can be found in [25], Remark 2.

Definition 3. Let U \subset \mathbb{R}^d be a bounded starlike domain with respect to 0. Given a point x \in \mathbb{R}^d and a closed set M \subset \mathbb{R}^d, we set

\begin{equation*} \begin{gathered} \, U(x, r):= x+rU, \qquad \overline{U}(x,r) := \overline{U(x,r)}, \qquad d_u(x,M)= \inf\bigl\{ p_u(y-x)\colon y \in M \bigr\} \\ \text{and}\quad P^u_M(x) := M \cap \overline{U}(x, d_u(x,M)). \end{gathered} \end{equation*} \notag

Note that

\begin{equation*} P^u_M(x) \neq \varnothing\quad\text{and} \quad M \cap U(x, d_u(x,M))= \varnothing, \end{equation*} \notag
since M is closed and U is open. However, in general, the equality M \cap \overline{U}(x,\lambda)=\varnothing need not hold for all \lambda \in (0, d_u(x,M)) .

Recall that a function f\colon \mathbb{R}^d \to \mathbb{R} is said to be upper semicontinuous on \mathbb{R}^d if \varlimsup_{x \to x_0} f(x) \leqslant f(x_0) for all x_0 \in \mathbb{R}^d.

Lemma 3. Let U \subset \mathbb{R}^d be a bounded starlike domain with respect to 0 and let M be a nonempty closed subset of \mathbb{R}^d. Then

1) the function d_u(\,\cdot\,, M) is upper semicontinuous on \mathbb{R}^d;

2) the set-valued map P^u_M is upper semicontinuous on \mathbb{R}^d.

Proof. 1) Let x \in \mathbb{R}^d. We claim that the function d_u(\,\cdot\, , M) is upper semicontinuous at x. In other words, we need to show that, for each sequence x_n \to x, n\to\infty,
\begin{equation*} d_u(x,M) \geqslant \varlimsup_{n \to \infty} d_u(x_n,M) =: r. \end{equation*} \notag
Assume on the contrary that d_u(x,M) < r. Hence M \cap U(x,r) \neq \varnothing. We choose y \in M \cap U(x,r) and set z := (y-x)/r \in U. It is clear that y=x+r z. Let \varepsilon > 0 be such that
\begin{equation*} B(x+rz, 4r\varepsilon) \subset U(x,r)=x+r U. \end{equation*} \notag
We also set r_n := d_u(x_n,M). The above inclusion is invariant under homothetic transformations and translations, so
\begin{equation} B(x_n+r_n z, 4 r_n \varepsilon ) \subset (x_n+r_n U )=U(x_n,r_n). \end{equation} \tag{5}
We choose n so that
\begin{equation*} \| x-x_n\| < r \varepsilon\quad\text{and} \quad |r-r_n| < \min\biggl(\frac{r \varepsilon}{\| z \|+1}, \frac{r}{4}\biggr). \end{equation*} \notag
In this case we have the estimate
\begin{equation*} \| x+r z -(x_n+r_n z)\| \leqslant \| x-x_n \|+\| (r-r_n)z \| < 2 r \varepsilon, \qquad r_n > \frac{3r}{4}. \end{equation*} \notag
Using the last two inequalities and (5) we obtain
\begin{equation*} B(y, r \varepsilon)=B(x+r z, r \varepsilon) \subset B(x_n+r_n z, 3 r \varepsilon) \subset B(x_n+r_n z, 4 r_n \varepsilon) \subset U(x_n, r_n ). \end{equation*} \notag
Hence
\begin{equation*} M \cap B(y, r\varepsilon) \subset M \cap U(x_n, r_n )=\varnothing; \end{equation*} \notag
however, y \in M \cap B(y, r \varepsilon) because y has been chosen in M \cap U(x,r). Therefore, M \cap U(x,r)=\varnothing, and so d_u(x, M) \geqslant r. This proves the first assertion of the lemma.

2) We claim that the set-valued mapping P^u_M is upper semicontinuous at x. To prove this it suffices to show that if x_n \to x as n\to\infty, y_n \in P^u_M(x_n), and y_n \to y as n\to\infty, then y \in P^u_M(x). Passing to subsequences we can assume without loss of generality that r_{n} := d_u(x_{n}, M) \to r. The sets \overline{U}(x_{n},r_{n}) converge to \overline{U}(x,r) in the Hausdorff metric. Hence y \in \overline{U}(x,r). In addition, y \in M because y_n \in M and since M is closed. On the other hand, since d_u(\cdot,M) is upper semicontinuous, we have R := d_u(x,M) \geqslant r. Therefore, y \in \overline{U}(x,R) \cap M, that is, y \in P^u_M(x).

Lemma 3 is proved.

As a direct corollary to Lemmas 2 and 3 we have the following.

Theorem 1. Let U \subset \mathbb{R}^d be a bounded starlike domain with respect to 0, let {M \subset \mathbb{R}^d} be a closed set, and let a, b \in \mathbb{R}^d and r > 0 be such that a \in B(b,r) and a \notin \operatorname{conv}(\{x\} \cup P^u_M(x)) for all x \in S(b,r). Then there exists x_* \in \mathbb{R}^d such that a \in \operatorname{conv}(P^u_M(x_*)).

Under additional constraints on a set M and a domain U, the above result can be refined as follows.

Theorem 2. Let U \subset \mathbb{R}^d be a bounded starlike domain with respect to 0, let \partial U be a C^1-smooth closed (d-1)-dimensional manifold, and let M \subset \mathbb{R}^d be compact. Then \operatorname{ri}(\operatorname{conv} M) \subset \bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x)) and \operatorname{conv} M=\overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x))}.

Proof. 1) First we show that \operatorname{ri}(\operatorname{conv} M)\,{\subset} \bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x)).

Consider the case when \operatorname{aff} M= \mathbb{R}^d. Then

\begin{equation*} \operatorname{ri} (\operatorname{conv} M)=\operatorname{int} (\operatorname{conv} M). \end{equation*} \notag
Let a \in \operatorname{ri} (\operatorname{conv} M) \setminus M. We can find a_1, \dots, a_\nu \in M and \delta \in (0,1) such that
\begin{equation} B(a, 3\delta) \subset \operatorname{conv}(\{a_1, \dots, a_\nu\}), \qquad B(a, 3\delta) \cap M=\varnothing. \end{equation} \tag{6}
We claim that there exists a point x_* \in \mathbb{R}^d such that a \in \operatorname{conv}(P^u_M(x_*)). By Theorem 1, to prove this it suffices to find R > 0 such that
\begin{equation*} a \notin \operatorname{conv}(\{x\} \cup P^u_M(x)) \quad \forall\, x \in S(0,R). \end{equation*} \notag
Let V \subset \mathbb{R}^d be a bounded starlike domain, and let \partial V be a C^1-smooth closed (d-1)-dimensional manifold. Given a point y \in \partial V, we denote the unit outward normal vector to V at y by N_{\partial V}(y). We also consider the half-space
\begin{equation} \Pi_{\partial V}(y, t):= \bigl\{ x \in \mathbb{R}^d\colon \langle x, N_{\partial V}(y)\rangle \leqslant\langle y, N_{\partial V}(y)\rangle-t \bigr\}. \end{equation} \tag{7}
The diameter of M is defined by
\begin{equation*} \operatorname{diam}(M)=\sup\{ \| y-y' \|\colon y, y' \in M \}. \end{equation*} \notag
Since \partial U is C^1-smooth and compact, there exists \lambda_0 > 0 such that, for all \lambda \geqslant \lambda_0 and y \in \partial U,
\begin{equation} \lambda \overline{U} \cap \overline{B}(\lambda y, \operatorname{diam}(M) ) \subset \Pi_{\lambda \partial U}(\lambda y, -\delta) \cap \overline{B}(\lambda y, \operatorname{diam}(M) ) \end{equation} \tag{8}
and
\begin{equation} \lambda U \cap \overline{B}(\lambda y, \operatorname{diam}(M) ) \supset \Pi_{\lambda \partial U}(\lambda y, \delta) \cap \overline{B}(\lambda y, \operatorname{diam}(M) ). \end{equation} \tag{9}
Next, there exists R > 0 such that
\begin{equation} d_u(x,M) \geqslant \lambda_0 \quad \forall\, x \in S(0,R). \end{equation} \tag{10}
We prove that
\begin{equation*} B(a,\delta) \cap \operatorname{conv}(\{x\} \cup P^u_M(x))=\varnothing \quad \forall\, x \in S(0,R). \end{equation*} \notag
Assume the contrary. Consider an arbitrary b \in B(a,\delta) \cap \operatorname{conv}(\{x\} \cup P^u_M(x)) and take y_1, \dots, y_m \in P^u_M(x) such that b \in \operatorname{conv}(\{x, y_1, \dots, y_m \}). We also set
\begin{equation*} U' := U(x, d_u(x,M)). \end{equation*} \notag
It is clear that \partial U' is homothetic to \partial U and y_1, \dots, y_m \in \partial U'. Consider
\begin{equation*} N(y_1) := N_{\partial U'}(y_1)\quad\text{and} \quad \Pi(y_1,t) := \Pi_{\partial U'}(y_1, t). \end{equation*} \notag
Since U' is a starlike domain with respect to the point x, we have x \in \Pi(y_1, 0), and therefore x \in \Pi(y_1, -\delta). Substituting \lambda U=U'-x and \lambda y=y_1-x into (8) and (9) and adding x to the resulting expressions we obtain
\begin{equation} \overline{U'} \cap \overline{B}(y_1, \operatorname{diam}(M) ) \subset \Pi(y_1, -\delta) \cap \overline{B}(y_1, \operatorname{diam}(M) ) \end{equation} \tag{11}
and
\begin{equation} U' \cap \overline{B}(y_1, \operatorname{diam}(M) ) \supset \Pi(y_1, \delta) \cap \overline{B}(y_1, \operatorname{diam}(M) ). \end{equation} \tag{12}
It is clear that \| y_1-y_i \| \leqslant \operatorname{diam}(M) for all i=1, \dots, m. Hence (11) implies that y_i \in \Pi(y_1,-\delta). As a result, \operatorname{conv}\{x, y_1, \dots, y_m\} \subset \Pi(y_1,-\delta), and therefore {b \in \Pi(y_1,-\delta)}. Consequently, c := b-2\delta N(y_1) \in \Pi(y_1, \delta). It is clear that {c\in B(a, 3\delta)}, and now it follows from (6) that some of the points a_1, \dots, a_\nu also lie in \Pi(y_1,\delta). Without loss of generality we can assume below that a_1 \in \Pi(y_1,\delta). On the other hand, since M \subset \overline{B}(y_1, \operatorname{diam}(M)), using (12) we obtain
\begin{equation*} U' \cap M \supset \Pi(y_1,\delta) \cap M, \end{equation*} \notag
which, however, is impossible, because U' \cap M=\varnothing and a_1 \in \Pi(y_1,\delta) \cap M.

Now consider the case when \operatorname{aff} M \neq \mathbb{R}^d. We can assume without loss of generality that 0 \in M, that is, \operatorname{aff} M= \operatorname{span} M. We set l:= d-\dim (\operatorname{span} M) > 0. It is clear that there exists a set W=\{w_1, \dots, w_l\}, where w_1, \dots, w_l \in \mathbb{R}^d, such that

\begin{equation} \operatorname{aff} (M \cup W)=\operatorname{span} (M \cup W)=\mathbb{R}^d. \end{equation} \tag{13}
By what has already been proved, for each point a \in \operatorname{ri}(\operatorname{conv} M) and
\begin{equation} b := \frac{a}{2}+\frac{1}{2l}(w_1+\dots+w_l) \in \operatorname{int}(\operatorname{conv}(M \cup W)) \end{equation} \tag{14}
there exists x_* \in \mathbb{R}^d such that
\begin{equation*} b \in \operatorname{conv}(P^u_{M \cup W}(x_*)). \end{equation*} \notag
Therefore, we have
\begin{equation*} b=\lambda y+(1-\lambda)w, \end{equation*} \notag
where
\begin{equation*} \lambda \in [0,1], \qquad y \in \operatorname{conv}(P^u_{M \cup W}(x_*) \cap M )\quad\text{and} \quad w \in \operatorname{conv}(P^u_{M \cup W}(x_*) \cap W). \end{equation*} \notag
Since \dim{(\operatorname{span}{M})}+\dim{(\operatorname{span}{W})}=n, we have \operatorname{span}{M} \cap \operatorname{span}{W}=\{ 0\}. Now (14) implies that
\begin{equation*} \lambda=\frac{1}{2}, \qquad y=a\quad\text{and} \quad w=\frac{w_1+\dots+w_l}{l}. \end{equation*} \notag
As a result,
\begin{equation*} a \in \operatorname{conv}(P^u_{M \cup W}(x_*) \cap M)=\operatorname{conv}(P^u_{M}(x_*)), \end{equation*} \notag
as claimed.

2) Let us now prove the equality \operatorname{conv} M=\overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x))}. Since M is compact, we have \operatorname{conv} M=\overline{\operatorname{ri}(\operatorname{conv} M)} \subset \overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x))}. It is clear that the reverse inclusion also holds because \operatorname{conv}(P^u_M(x) ) \subset \operatorname{conv} M for all x \in \mathbb{R}^d.

Theorem 2 is proved.

Remark 1. Under the hypotheses of Theorem 2, for each d \geqslant 2 there exists a compact set M \subset \mathbb{R}^d such that \operatorname{conv} M \neq \bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x)).

Proof. As U we take the Euclidean ball B(0,1) in \mathbb{R}^d. Let e_1, \dots, e_d be an orthonormal basis for \mathbb{R}^d, and let M=\overline{B}(e_2,1) \cup \overline{B}(-e_2,1). Then P^u_M is the metric projection P_M in the Euclidean space \mathbb{R}^d. It is clear that (e_1 \pm e_2) \in M, since e_1 \in \operatorname{conv} M. It is easily seen that if e_1 \in \operatorname{conv}(P_M(x)), then P_M(x)=\{e_1+e_2, e_1-e_2 \}. Hence the ball \overline{B}(x, \| x-e_2\|-1) touches the balls \overline{B}(e_2,1) and \overline{B}(-e_2,1) at the points e_1+e_2 and e_1-e_2, respectively. Now one can draw a straight line through each triple of points \{e_2, e_1+e_2, x\} and \{-e_2, e_1-e_2, x\} (here it is important that the space \mathbb{R}^d is Euclidean). Clearly, these two straight lines intersect at x. On the other hand, the straight lines through the pairs of points \{e_2, e_1+e_2 \} and \{-e_2, e_1 -e_2 \}, are parallel. This contradiction completes the proof.

Corollary 1. Let U \subset \mathbb{R}^d be a bounded starlike domain with respect to 0, let \partial U be a C^1-smooth closed (d-1)-dimensional manifold, and let M \subset \mathbb{R}^d be a compact set. Assume that |P^u_M(x)| \leqslant k for all x \in \mathbb{R}^d. Then \operatorname{conv} M=\operatorname{conv}_k M.

Proof. By Theorem 2
\begin{equation*} \operatorname{ri} (\operatorname{conv} M) \subset \bigcup_{x \in \mathbb{R}^d} \operatorname{conv} ( P^u_M(x) ), \end{equation*} \notag
and therefore, since |P^u_M(x)| \leqslant k, we have
\begin{equation*} \overline{\operatorname{conv} M}=\overline{\operatorname{ri} (\operatorname{conv} M)} \subset \overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv} ( P^u_M(x) )} \subset \overline{\operatorname{conv}_k M}. \end{equation*} \notag

The reverse inclusion is clear. So we have shown that \overline{\operatorname{conv} M}=\overline{\operatorname{conv}_k M}. The set M is compact, hence the sets \operatorname{conv} M and \operatorname{conv}_k M are closed. Therefore, \operatorname{conv} M=\operatorname{conv}_k M.

This proves Corollary 1.

§ 4. Results for convex domain

Let U be a bounded convex domain in a Banach space X, let 0 \in U, and let p_u be the Minkowski functional of U. It is clear that there exist c_1, c_2 > 0 such that

\begin{equation*} c_1 \| x \| \leqslant p_u(x) \leqslant c_2 \| x \| \quad \forall x \in X. \end{equation*} \notag
We recall (see [26], § 2.4.7) that a convex domain U is smooth if the Minkowski functional p_u is Gâteaux differentiable on X \setminus \{ 0 \}, that is, for each x \in X \setminus \{ 0 \} there exists a continuous linear functional p'_u(x;\cdot) \in X^* such that for any h \in X the limit
\begin{equation} \lim_{t \to 0}\frac{p_u(x+th)-p_u(x)}{t}=p'_u(x;h) \end{equation} \tag{15}
exists. The modulus of smoothness of a convex body U is defined by
\begin{equation*} \omega_u(t)=\sup\biggl\{ \frac{1}{2}(p_u(x+y)+p_u(x-y)-2)\colon x \in \partial U, \, y \in X, \, p_u(y)=t \biggr\}. \end{equation*} \notag
A convex body U is said to be uniformly smooth if its Minkowski functional p_u is uniformly Fréchet differentiable on U, that is, (15) holds uniformly for x \in \partial U, h \in U. It is known (see [26], § 2.4.7) that the modulus of smoothness of a uniformly smooth body U satisfies \omega_u(t)=o(t) as t \searrow 0. Let x \in \partial U and let \Pi_x be the support hyperplane to U at x. Then p_u(x+y)-1 \geqslant 0 and p_u(x-y)-1 \geqslant 0 for all y \in \Pi_x-x. Hence
\begin{equation} \sigma(t) := \sup\bigl\{ p_u(x+y)-1\colon x \in \partial U, \, y \in \Pi_x-x, \, p_u(y) \leqslant t \bigr\}=o(t), \qquad t \to 0. \end{equation} \tag{16}
For x \in \partial U let f_x \in S_{X^*} be the support functional to U at x. We claim that, for each \varepsilon \in (0,c_1), there exists a positive \delta=o(\varepsilon), \varepsilon \searrow 0, such that
\begin{equation} \bigl\{ z \in X\colon f_x(z) \leqslant f_x(x)-\delta \bigr\} \cap \overline{B}(x, \varepsilon) \subset U \cap \overline{B}(x, \varepsilon) \quad \forall\, x \in \partial U. \end{equation} \tag{17}
Let \varepsilon and \delta be some positive numbers. We represent each point z \in B(x, \varepsilon) such that f_x(z) \leqslant f_x(x)-\delta as follows:
\begin{equation*} z=(1-\tau)x+y, \quad\text{where}\quad \tau \geqslant \frac{\delta}{f_x(x)}\quad\text{and} \quad y \in (\Pi_x-x). \end{equation*} \notag
Now by (16) we have
\begin{equation*} p_u(z)=p_u((1-\tau)x+y)=(1-\tau) p_u\biggl(x+\frac{y}{1-\tau}\biggr) \leqslant 1-\tau+ \sigma(p_u(y)) \end{equation*} \notag
and
\begin{equation*} \tau=\tau p_u(x) \leqslant \tau p_u\biggl(x-\frac{y}{\tau}\biggr)=p_u(\tau x-y)=p_u(x-z) \leqslant c_2 \| x-z \| \leqslant c_2 \varepsilon. \end{equation*} \notag
Since z \in B(x, \varepsilon), we have \| y \| \leqslant \| z-x\|+\tau \| x \| \leqslant \varepsilon+\tau/ c_1, and therefore
\begin{equation} p_u(y) \leqslant c_2 \| y \| \leqslant c_2 \varepsilon+\tau \frac{c_2}{c_1} \leqslant \biggl(c_2+\frac{c_2^2}{c_1}\biggr) \varepsilon =: C \varepsilon. \end{equation} \tag{18}
It is clear that for each \varepsilon > 0 one can choose \delta=\delta(\varepsilon) > 0 so that c_1 \delta > \sigma(C \varepsilon) and \delta=o(\varepsilon) as \varepsilon \searrow 0. By (18) and since f_x(x) \leqslant \| x \| \leqslant 1/c_1, for \delta= \delta(\varepsilon) we have
\begin{equation*} p_u(z) \leqslant 1-\tau+\sigma(p_u(y)) \leqslant 1-\frac{\delta}{f_x(x)}+\sigma(C\varepsilon) \leqslant 1-c_1 \delta+\sigma(C \varepsilon) < 1. \end{equation*} \notag
Therefore, z \in U. This proves (17).

Note that in each smooth convex body a finite-dimensional space is uniformly smooth.

Theorem 3. Let U \subset \mathbb{R}^d be a bounded smooth convex domain such that 0 \in U, and let M \subset \mathbb{R}^d be closed. Then

\begin{equation*} \operatorname{ri}(\operatorname{conv} M) \subset \bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x)) \quad\textit{and}\quad \overline{\operatorname{conv} M}=\overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x))}. \end{equation*} \notag

Proof. 1) First let us show that \operatorname{ri}(\operatorname{conv} M)\,{\subset} \bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P_M(x)). Consider the case when \operatorname{aff} M= \mathbb{R}^d. Then
\begin{equation*} \operatorname{ri} (\operatorname{conv} M)=\operatorname{int} (\operatorname{conv} M). \end{equation*} \notag
Let a \in \operatorname{ri} (\operatorname{conv} M) \setminus M. Then there exist points a_1, \dots, a_\nu \in M and \delta \in (0,1) such that
\begin{equation} B(a, 2\delta) \subset \operatorname{conv}(\{a_1, \dots a_\nu\})\quad\text{and} \quad B(a, 2\delta) \cap M=\varnothing. \end{equation} \tag{19}
We claim that there exists a point x_* \,{\in}\, \mathbb{R}^d such that a \!\in\! \operatorname{conv}(P_M(x_*)). By Lemma 3 the map P_M^u is upper semicontinuous. Now, in view of Theorem 1, in order to show that the required point x_* exists it suffices to find R > 0 such that
\begin{equation*} a \notin \operatorname{conv}(\{x, P_M^u(x)\}) \quad \forall\, x \in S(0,R). \end{equation*} \notag
We set R_a :=\max_{i=1, \dots, \nu}\| a-a_i \|. Now we recall the definitions of the unit outward normal vector N_{\partial V}(y) and the half-space \Pi_Y(y,t) introduced in the proof of Theorem 2 (see (7)). Since U is uniformly smooth, we have (17). Hence there exists \lambda_0 > 0 such that, for all \lambda \geqslant \lambda_0 and all y \in \lambda \partial U,
\begin{equation} \Pi_{\lambda \partial U}(y, \delta) \cap \overline{B}(y, R_a +1 ) \subset U(0,\lambda) \cap \overline{B}(y, R_a +1 ). \end{equation} \tag{20}
Let R > 0 be such that
\begin{equation*} p_u( a-x) > \lambda_0+\sup_{z \in B(a,\delta)} p_u(a-z) \quad \forall\, x \in S(0,R). \end{equation*} \notag
We show that
\begin{equation} B(a, \delta) \cap \overline{U}(x, d_u(x,M))=\varnothing \quad \forall\, x \in S(0,R). \end{equation} \tag{21}
Assume the contrary. Let b \in B(a,\delta) \cap \overline{U}(x, d_u(x,M)). It is clear that in this case U(x, p_u(b-x)) \cap M=\varnothing. Set U' := U(x, p_u(b-x)). Since
\begin{equation*} p_u(b-x) \geqslant p_u( a-x)-p_u(a-b) > \lambda_0, \end{equation*} \notag
from (20) we obtain
\begin{equation*} \Pi_{\partial U'} (b, \delta) \cap \overline{B}(b,R_a +1) \subset U' \cap \overline{B}(b, R_a +1). \end{equation*} \notag
The inclusion \overline{B}(a,R_a) \subset \overline{B}(b, R_a+1) is straightforward, hence
\begin{equation} \Pi_{\partial U'} (b, \delta) \cap \overline{B}(a,R_a) \subset U' \cap \overline{B}(a, R_a). \end{equation} \tag{22}
We set c := b-\delta N_{\partial U'}(b) \in \Pi_{\partial U'}(b,\delta). Since b \in B(a,\delta), we find that
\begin{equation*} c \in B(a,2\delta) \subset \operatorname{conv}( \{a_1, \dots, a_\nu\}). \end{equation*} \notag
Consequently, the half-space \Pi_{\partial U'} (b, \delta) contains the point c and one of the points a_1, \dots, a_\nu. We can assume without loss of generality that a_1 \in \Pi_{\partial U'} (b, \delta). It is clear from the definition of R_a that a_1 \in \overline{B}(a,R_a). Hence
\begin{equation} a_1 \in \Pi_{\partial U'} (b, \delta) \cap \overline{B}(a,R_a). \end{equation} \tag{23}
On the other hand a_1 \in M, and so a_1 \notin U', which implies that
\begin{equation} a_1 \notin U' \cap \overline{B}(a, R_a). \end{equation} \tag{24}
It is clear that (23) and (24) are in contradiction to (22). This therefore proves (21). As a result, B(a,\delta) \cap \operatorname{conv}( \{ x\} \cup P_M^u(x) )=\varnothing for all x \in S(0,R). This completes the case when \operatorname{aff} M=\mathbb{R}^d.

The case when \operatorname{aff} M \neq \mathbb{R}^d can be reduced to \operatorname{aff} M=\mathbb{R}^d as in Theorem 2.

2) We claim that \overline{\operatorname{conv} M}=\overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P_M^u(x))}. By 1) we have \overline{\operatorname{conv} M}=\overline{\operatorname{ri}(\operatorname{conv} M)} \subset \overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x))}. It is clear that the reverse inclusion also holds, since \operatorname{conv}(P^u_M(x) ) \subset \operatorname{conv} M for all x \in \mathbb{R}^d.

Theorem 3 is proved.

Remark 2. For a closed unbounded set M, in general \operatorname{conv} M \neq \overline{\operatorname{conv} M} and therefore \operatorname{conv} M \neq \overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P^u_M(x))}, in contrast to the conclusion of Theorem 2.

Corollary 2. Let U \subset \mathbb{R}^d be a bounded smooth convex domain and M \subset \mathbb{R}^d be a closed set with at most k-valued metric projection P^u_M. Then \overline{\operatorname{conv} M}=\overline{\operatorname{conv}_k M}.

The proof is similar to the proof of Corollary 1.

§ 5. Infinite-dimensional results

Theorem 4. Let X be a Banach space, U \subset X be a bounded uniformly smooth convex domain, and let M \subset X be boundedly compact. Then

\begin{equation*} \overline{\operatorname{conv} M}=\overline{\bigcup_{x \in X}\operatorname{conv}(P^u_M(x))}. \end{equation*} \notag

Proof. Let p_u be the Minkowski functional of U, and let c_1 and c_2, c_1 < c_2, be positive numbers such that
\begin{equation} c_1 \| x \| \leqslant p_u(x) \leqslant c_2 \| x \| \quad \forall x \in X. \end{equation} \tag{25}
We assume without loss of generality that c_2=1 (for otherwise we can replace the norm \| \cdot \| by c_1 \| \cdot \|). Let a_1, \dots, a_\nu \in M, A := \{a_1, \dots, a_\nu\}, and let {a \in \operatorname{ri}(\operatorname{conv} A)}. We claim that a can be approximated arbitrarily well by points in \bigcup_{x \in X}\operatorname{conv}(P^u_M(x)). Given Y \subset X and t > 0, we set
\begin{equation} Y_t := \bigl\{x \in X\colon d(x, Y) \leqslant t \bigr\}\quad\text{and} \quad Y^u_t := \bigl\{x \in X\colon d_u(x, Y) \leqslant t \bigr\}. \end{equation} \tag{26}
Fix \varepsilon \in (0,1/2). Since U is uniformly smooth, (17) holds, and therefore here exists \lambda_0 > 0 such that for all \lambda \geqslant \lambda_0, all y \in \lambda \partial U and any support functional f_y \in S_{X^*} to \lambda U at y we have
\begin{equation} \bigl\{z\,{\in}\, X\colon f_y(z) \,{\leqslant}\, f_y(y)-\varepsilon \bigr\} \cap \overline{B}(y, \operatorname{diam}(A)+1) \,{\subset}\, U(0,\lambda) \cap \overline{B}(y, \operatorname{diam}(A)+1). \end{equation} \tag{27}
Let r > 0 be such that
\begin{equation*} d_u(x, A_{2\varepsilon} \cup \{ a \}) \geqslant \lambda_0 \quad \forall\, x \in X \setminus B(0, r). \end{equation*} \notag
We claim that
\begin{equation} a \notin \overline{U}(x, d_u(x,A_{2\varepsilon})) \quad \forall\, x \in X \setminus B(0,r). \end{equation} \tag{28}
Assume the contrary. Then
\begin{equation} U(x, p_u(a-x)) \subset U(x, d_u(x, A_{2\varepsilon})). \end{equation} \tag{29}
We denote the norm-one support functional to the domain \overline{U}(x, p_u(a-x)) at the point a by f_a. For t \in \mathbb{R} we set
\begin{equation*} \Pi(a, t)=\bigl\{z \in X\colon f_a(z) \leqslant f_a(a)-t \bigr\}. \end{equation*} \notag
Hence by (27) we have
\begin{equation} \Pi(a, \varepsilon) \cap \overline{B}(a, \operatorname{diam}(A)+1) \subset U(x, p_u(a-x)) \cap \overline{B}(a, \operatorname{diam}(A)+ 1). \end{equation} \tag{30}
It is clear that some points of A also lie in the half-space \Pi(a, 0). We can assume without loss of generality that a_1 \in \Pi(a, 0), that is, f_a(a_1) \leqslant f_a(a). Hence there exists b_1 \in B(a_1, 2\varepsilon) such that f_a(b_1) \leqslant f_a(a)-\varepsilon. Since
\begin{equation*} \| b_1-a\| \leqslant \| b_1-a_1\|+\| a_1-a \| \leqslant 2\varepsilon+\operatorname{diam}(A) < 1+\operatorname{diam}(A), \end{equation*} \notag
we have b_1 \in \Pi(a, \varepsilon) \cap \overline{B}(a, \operatorname{diam}(A)+1). On the other hand b_1 \notin U(x, p_u(a-x)), since A_{2\varepsilon} \cap U(x, p_u(a-x))= \varnothing in view of inclusion (29). But the existence of such b_1 contradicts (30). This therefore proves (28). Since c_2=1, from the definition (26) we obtain A_{2\varepsilon} \subset A_{2c_2\varepsilon}^u= A_{2\varepsilon}^u. Now (28) implies that
\begin{equation} a \notin \overline{U}(x, d_u(x,A^u_{2\varepsilon})) \quad \forall\, x \in X \setminus B(0,r). \end{equation} \tag{31}
Next, from the definition of P_M^u it is clear that the supremum
\begin{equation} \sup\bigl\{ \| y \|\colon y \in P_M^u(x), \,\| x \| \leqslant r \bigr\} =: R \end{equation} \tag{32}
is finite. Since M is boundedly compact, there exists an \varepsilon-net x_1, \dots, x_m \in X for {\overline{B}(0, R) \cap M}. Let L := \operatorname{span}\{x_1, \dots, x_m\}. For x \in L we set
\begin{equation*} D(x) := \overline{U}(x, d_u(x,M^u_{2\varepsilon})) \cap L \end{equation*} \notag
and consider the set-valued mapping
\begin{equation*} \Phi\colon L \to 2^L \setminus \{\varnothing\}, \qquad x \mapsto P^u_{D(x)} \circ P_M^u(x). \end{equation*} \notag
We claim that \Phi is upper semicontinuous. To prove this it suffices to show that if x_n \to x as n\to\infty, z_n \in \Phi(x_n), and z_n \to z as n\to\infty, then z \in \Phi(x). By the definition of \Phi there exist y_n \in M such that
\begin{equation*} y_n \in P_M^u(x_n)\quad\text{and} \quad z_n \in P^u_{D(x_n)}(y_n). \end{equation*} \notag
Passing to a subsequence we can assume that y_n \to y as n\to\infty and, in addition, y \in P^u_M(x), since the map P_M^u is upper semicontinuous. The sets D(x_n) tend to D(x) in the Hausdorff metric, because the function d_u(\, \cdot \,, M^u_{2\varepsilon}) is continuous on X. Therefore,
\begin{equation*} z \in D(x)\quad\text{and} \quad p_u(z_n-y_n)=d_u(y_n, D(x_n)) \to d_u(y,D(x)),\qquad n\to\infty. \end{equation*} \notag
On the other hand p_u(z_n-y_n) \to p_u(z-y) as n\to\infty. Hence z \in P^u_{D(x)}(y), which implies that z \in \Phi(x), as required.

Now consider the map

\begin{equation*} F\colon L \to \operatorname{Conv}(L), \qquad x \mapsto \operatorname{conv} \Phi(x). \end{equation*} \notag
It is upper semicontinuous because \Phi is. Note that for all x \in L
\begin{equation*} \operatorname{conv}( \{ x\} \cup F(x)) \subset D(x)=\overline{U}(x, d_u(x, M^u_{2\varepsilon})) \cap L \subset \overline{U}(x, d_u(x, A^u_{2\varepsilon})), \end{equation*} \notag
so that by (31)
\begin{equation*} a \notin \operatorname{conv}( \{ x\} \cup F(x)) \qquad \forall\, x \in L \setminus B(0,r). \end{equation*} \notag
Now by Lemma 2 there exists a point x_* \in L \cap \overline{B}(0,r) such that
\begin{equation*} a \in F(x_*)=\operatorname{conv} \Phi(x_*). \end{equation*} \notag
Let z_1, \dots, z_n \in \Phi(x_*) be points such that a=\sum_{i=1}^n \lambda_i z_i for \lambda_i \geqslant 0, i=1,\dots,n, \sum_{i=1}^n{\lambda_i}=1. Since \Phi(x_*)=P^u_{D(x_*)} \circ P_M^u(x_*), there exist y_i \in P_M^u(x_*) such that z_i \in P^u_{D(x_*)}(y_i).

For each i \in 1, \dots, n and all z \in D(x_*), \widetilde{z}_i \in P^u_L(y_i), we have

\begin{equation} p_u(z_i-y_i) \leqslant p_u(z-y_i) \leqslant p_u(z-\widetilde{z}_i)+p_u(\widetilde{z}_i-y_i). \end{equation} \tag{33}
It is clear that
\begin{equation} p_u(\widetilde{z}_i-y_i)=d_u(y_i, L) \leqslant c_2 d(y_i, L)=d(y_i, L) \leqslant \varepsilon, \end{equation} \tag{34}
because y_i \in M \cap B(0,R) in view of (32) and since L contains an \varepsilon-net for {M \cap B(0,R)}. Assume that \widetilde{z}_i \notin D(x_*), that is, p_u( \widetilde{z}_i-x_*) > d_u(x_*, M_{2\varepsilon}^u). Hence, for
\begin{equation*} z=x_*+d_u(x_*,M^u_{2\varepsilon})\frac{\widetilde{z}_i-x_*}{p_u(\widetilde{z}_i-x_*)} \end{equation*} \notag
we have the estimate
\begin{equation*} \begin{aligned} \, p_u(\widetilde{z}_i-z) &=p_u(\widetilde{z}_i-x_*)-p_u(z-x_*)= p_u(\widetilde{z}_i-x_*)-d_u(x_*, M^u_{2\varepsilon}) \\ &\leqslant p_u(\widetilde{z}_i-y_i)+p_u( y_i-x_*)-d_u(x_*,M^u_{2\varepsilon}) \\ &\leqslant \varepsilon+d_u(x_*, M)-d_u(x_*, M^u_{2\varepsilon}) \leqslant 3\varepsilon. \end{aligned} \end{equation*} \notag
Therefore,
\begin{equation} p_u(z-\widetilde{z}_i) \leqslant c_2\| z- \widetilde{z}_i\|=c_2\| \widetilde{z}_i-z \| \leqslant \frac{c_2}{c_1}p_u(\widetilde{z}_i- z) \leqslant \frac{3 \varepsilon}{c_1}. \end{equation} \tag{35}
Now from (33)(35) we obtain
\begin{equation*} \| z_i-y_i\| \leqslant \frac{p_u(z_i-y_i)}{c_1} \leqslant \frac{p_u(z- \widetilde{z}_i)}{c_1}+\frac{p_u(\widetilde{z}_i-y_i)}{c_1} \leqslant \frac{3\varepsilon}{c_1^2}+\frac{\varepsilon}{c_1} \leqslant \frac{4\varepsilon}{c_1^2}. \end{equation*} \notag
If \widetilde{z}_i \in D(x_*), then
\begin{equation*} p_u(z_i-y_i) =p_u(\widetilde{z}_i-y_i) \leqslant \varepsilon \quad \Longrightarrow \quad \| z_i-y_i \| \leqslant p_u(z_i-y_i) \leqslant \frac{\varepsilon}{c_1} < \frac{4\varepsilon}{c_1^2}. \end{equation*} \notag
So, for b=\sum_{i=1}^n \lambda_i y_i \in \operatorname{conv} P_M^u(x_*) we have
\begin{equation*} \| a-b\|=\biggl\| \sum_{i=1}^n \lambda_i (z_i-y_i)\biggr\| < \frac{4\varepsilon}{c_1^2} \sum_{i=1}^n \lambda_i=\frac{4\varepsilon}{c_1^2}. \end{equation*} \notag
Since \varepsilon can be chosen arbitrarily small, a \in \overline{\bigcup_{x \in X}\operatorname{conv}(P_M^u(x))}, and therefore \operatorname{conv} M \subset \overline{\bigcup_{x \in X}\operatorname{conv}(P_M^u(x))}. The reverse inclusion \overline{\operatorname{conv} M} \supset \overline{\bigcup_{x \in X}\operatorname{conv}(P_M^u(x))} is clear.

Theorem 4 is proved.

Corollary 3. Let X be a Banach space, U \subset X be a bounded uniformly smooth convex domain and M \subset X be a compact set with at most k-valued metric projection P_M^u. Then \overline{\operatorname{conv} M}=\overline{\operatorname{conv}_k M}.

Proof. By Theorem 4, \overline{\operatorname{conv} M}=\overline{\bigcup_{x \in X}\operatorname{conv}(P^u_M(x))} \subset \overline{\operatorname{conv}_k M}. The reverse inclusion \overline{\operatorname{conv}_k M} \subset \overline{\operatorname{conv} M} is clear.

Corollary 3 is proved.

Theorem 5. Let X be a Banach space, U \subset X be a bounded smooth convex domain and M \subset X be a compact set.

Then \overline{\operatorname{conv} M}=\overline{\bigcup_{x \in X}\operatorname{conv}(P_M^u(x))}.

Proof. Let p_u be the Minkowski functional of U. Let c_1 and c_2, c_1 < c_2, be the fixed positive numbers from (25). We can assume without loss of generality that c_2 < 1. Let a_1, \dots, a_\nu \in M, A := \{a_1, \dots, a_\nu\}, and let a\,{\in} \operatorname{ri}(\operatorname{conv} A). We claim that a can be approximated arbitrarily well by \bigcup_{x \in X}\operatorname{conv}(P_M^u(x)). Since M is compact, there exists an \varepsilon-net x_1, \dots, x_m \in X for M. Set
\begin{equation*} L := \operatorname{span}( A \cup \{x_1, \dots, x_m\}). \end{equation*} \notag
It is clear that V := U \cap L is a uniformly smooth convex domain in L, and it follows from the proof of Theorem 4 that there exits r > 0 such that
\begin{equation*} a \notin \overline{V}(x, d_u(x,A_{2\varepsilon}^u)) \quad \forall\, x \in L \setminus B(0,r) \end{equation*} \notag
(see (31) and above). For x \in L we set
\begin{equation*} D(x) := \overline{B}(x, d_u(x,M_{2\varepsilon}^u)) \cap L \end{equation*} \notag
and consider the set-valued mapping
\begin{equation*} \Phi\colon L \to 2^L \setminus \{ \varnothing \}, \qquad x \mapsto P^u_{D(x)} \circ P_M^u(x). \end{equation*} \notag
Arguing as in Theorem 4, it can be shown that there exist x_* \in B(0,r) \cap L and b \in \operatorname{conv} P_M^u(x_*) such that \| a- b\| < 4\varepsilon/c_1^2. It follows that \overline{\operatorname{conv} M} \subset \overline{\bigcup_{x \in X}\operatorname{conv}(P_M^u(x))}. The reverse inclusion \overline{\bigcup_{x \in X}\operatorname{conv}(P_M^u(x))} \subset \overline{\operatorname{conv} M} is clear.

The theorem is proved.

Corollary 4. Let X be a Banach space, U \subset X be a smooth convex domain and M \subset X be a compact set.

1) If the metric projection P^u_M is at most k-valued, then \overline{\operatorname{conv} M}=\operatorname{conv} M=\operatorname{conv}_k M.

2) If \operatorname{conv} M is not closed, then for each k there exists a point x_k \in X such that |P_M^u(x_k)| \geqslant k.

Proof. 1) By Theorem 4
\begin{equation*} \overline{\operatorname{conv} M}=\overline{\bigcup_{x \in X}\operatorname{conv}(P^u_M(x))} \subset \overline{\operatorname{conv}_k M}. \end{equation*} \notag
We claim that the set \operatorname{conv}_k M is closed. Indeed, if x_n\,{\in} \operatorname{conv}_k M and x_n \to x as {n\to\infty}, then for any natural n there exist y_{n}^i \in M (some of which can repeat) and \lambda_n^{i} \geqslant 0, i=1, \dots, k, \sum_{i=1}^k \lambda_n^{i}=1, such that
\begin{equation*} x_n=\sum_{i=1}^k \lambda_n^{i} y_n^{i}. \end{equation*} \notag
Since M is compact, there exists an increasing subsequence of indices \{n_j\}_{j=1}^\infty \subset \mathbb{N} such that y_{n_j}^{i} \to y^{i} and \lambda_{n_j}^{i} \to \lambda^i as j \to \infty, for all i=1, \dots, k. It is clear that x=\sum_{i=1}^k \lambda^i y^i \in \operatorname{conv}_k M, and thus the set \operatorname{conv}_k M is closed. Hence {\overline{\operatorname{conv} M} \subset \operatorname{conv}_k M}. The inclusion \operatorname{conv}_k M \subset \operatorname{conv} M is clear. The last two inclusions imply that \overline{\operatorname{conv} M}=\operatorname{conv} M= \operatorname{conv}_k M.

Assertion 1) is immediate from 2).

Corollary 4 is proved.

§ 6. Results for balls in Banach spaces

If as U we take the unit ball B(0,1) in a Banach space X, then P_M^u is the ordinary metric projection P_M. Now the following result is immediate from Theorems 35.

Theorem 6. Let X be a Banach space, and let M \subset X. Then the following assertions hold.

1) If X is a smooth finite-dimensional space and M is boundedly compact, then \operatorname{ri}(\operatorname{conv} M) \subset \bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P_M(x)).

2) If X is a uniformly smooth space and M is boundedly compact, then \overline{\operatorname{conv} M}=\overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P_M(x))}.

3) If X is smooth and M is compact, then \overline{\operatorname{conv} M}=\overline{\bigcup_{x \in \mathbb{R}^d} \operatorname{conv}(P_M(x))}.

Of course, similar results can also be derived from other theorems and corollaries presented in § 4 and § 5.

The author is greatly indebted to P. A. Borodin for stating the problem and making valuable comments, and also to A. R. Alimov and I. G. Tsar’kov for helpful discussions.


Bibliography

1. N. V. Efimov and S. B. Stechkin, “Some properties of Chebyshev sets”, Dokl. Akad. Nauk SSSR, 118:1 (1958), 17–19 (Russian)  mathnet  mathscinet  zmath
2. V. L. Klee, Jr., “A characterization of convex sets”, Amer. Math. Monthly, 56:4 (1949), 247–249  crossref  mathscinet  zmath
3. V. L. Klee, “Convex bodies and periodic homeomorphisms in Hilbert space”, Trans. Amer. Maths. Soc., 74 (1953), 10–43  crossref  mathscinet  zmath
4. V. I. Berdyshev, “On Chebyshev sets”, Dokl. Akad. Nauk Az. SSR, 22:9 (1966), 3–5 (Russian)  mathscinet  zmath
5. A. Brøndsted, “Convex sets and Chebyshev sets. II”, Math. Scand., 18 (1966), 5–15  crossref  mathscinet  zmath
6. A. L. Brown, “Chebyshev sets and the shapes of convex bodies”, Methods of functional analysis in approximation theory (Bombay 1985), Internat. Schriftenreihe Numer. Math., 76, Birkhäuser, Basel, 1986, 97–121  mathscinet  zmath
7. A. L. Brown, “Chebyshev sets and facial systems of convex sets in finite-dimensional spaces”, Proc. London Math. Soc. (3), 41:2 (1980), 297–339  crossref  mathscinet  zmath
8. L. P. Vlasov, “Approximative properties of sets in normed linear spaces”, Uspekhi Mat. Nauk, 28:6(174) (1973), 3–66  mathnet  mathscinet  zmath; English transl. in Russian Math. Surveys, 28:6 (1973), 1–66  crossref
9. V. S. Balaganskii and L. P. Vlasov, “The problem of convexity of Chebyshev sets”, Uspekhi Mat. Nauk, 51:6(312) (1996), 125–188  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 51:6 (1996), 1127–1190  crossref  adsnasa
10. I. G. Tsar'kov, “Bounded Chebyshev sets in finite-dimensional Banach spaces”, Mat. Zametki, 36:1 (1984), 73–87  mathnet  mathscinet  zmath; English transl. in Math. Notes, 36:1 (1984), 530–537  crossref
11. I. G. Tsar'kov, “Compact and weakly compact Tchebysheff sets in normed linear spaces”, Proceeding of the All-Union school on the theory of functions, Tr. Mat. Inst. Steklov., 189, Nauka, Moscow, 1989, 169–184  mathnet  mathscinet  zmath; English transl. in Proc. Steklov Inst. Math., 189 (1990), 199–215
12. A. R. Alimov, “Is every Chebyshev set convex?”, Mat. Prosveshchenie, Ser. 3, 2, Moscow Center for Continuous Mathematical Education, Moscow, 1998, 155–172 (Russian)  mathnet
13. A. R. Alimov, “On the structure of the complements of Chebyshev sets”, Funktsional. Anal. i Prilozhen., 35:3 (2001), 19–27  mathnet  crossref  mathscinet  zmath; English transl. in Funct. Anal. Appl., 35:3 (2001), 176–182  crossref
14. L. N. H. Bunt, Bijdrage tot de theorie der convexe puntverzamelingen, Proefschrifft Groningen, Noord-Hollandsche Uitgevers Maatschappij, Amsterdam, 1934, 108 pp.  zmath
15. H. Mann, “Untersuchungen über Wabenzellen bei allgemeiner Minkowskischer Metrik”, Monatsh. Math. Phys., 42:1 (1935), 417–424  crossref  mathscinet  zmath
16. T. Motzkin, “Sur quelques propriétés caractéristiques des ensembles convexes”, Atti Accad. Naz. Lincei Rend. (6), 21 (1935), 562–567  zmath
17. T. Motzkin, “Sur quelques propriétés caractéristiques des ensembles bornés non convexes”, Atti Accad. Naz. Lincei Rend. (6), 21 (1935), 773–779  zmath
18. C. Carathéodory, “Über den Variabilitätsbereich der Fourier'schen Konstanten von positiven harmonischen Funktionen”, Rend. Circ. Mat. Palermo, 32 (1911), 193–217  crossref  zmath
19. W. Fenchel, “Über Krümmung und Windung geschlossener Raumkurven”, Math. Ann., 101:1 (1929), 238–252  crossref  mathscinet  zmath
20. I. Bárány and R. Karasev, “Notes about the Carathéodory number”, Discrete Comput. Geom., 48:3 (2012), 783–792  crossref  mathscinet  zmath
21. A. A. Flerov, “Sets with at most two-valued metric projection on a normed plane”, Mat. Zametki, 101:2 (2017), 286–301  mathnet  crossref  mathscinet  zmath; English transl. in Math. Notes, 101:2 (2017), 352–364  crossref
22. O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev and V. M. Kharlamov, Elementary topology. Problem textbook, 3d ed., Moscow Center for Continuous Mathematical Education, Moscow, 2010, 446 pp.; English transl., Amer. Math. Soc., Providence, RI, 2008, xx+400 pp.  crossref  mathscinet  zmath
23. A. Cellina, “Approximation of set valued functions and fixed point theorems”, Ann. Mat. Pura Appl. (4), 82 (1969), 17–24  crossref  mathscinet  zmath
24. M. L. Gromov, “On simplexes inscribed in a hypersurface”, Mat. Zametki, 5:1 (1969), 81–89  mathnet  mathscinet  zmath; English transl. in Math. Notes, 5:1 (1969), 52–56  crossref
25. A. Brøndsted, “Convex sets and Chebyshev sets”, Math. Scand., 17 (1965), 5–16  crossref  mathscinet  zmath
26. Ş. Cobzaş, Functional analysis in asymmetric normed spaces, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2013, x+219 pp.  crossref  mathscinet  zmath

Citation: K. S. Shklyaev, “The convex hull and the Carathéodory number of a set in terms of the metric projection operator”, Sb. Math., 213:10 (2022), 1470–1486
Citation in format AMSBIB
\Bibitem{Shk22}
\by K.~S.~Shklyaev
\paper The convex hull and the Carath\'eodory number of a~set in terms of the metric projection operator
\jour Sb. Math.
\yr 2022
\vol 213
\issue 10
\pages 1470--1486
\mathnet{http://mi.mathnet.ru/eng/sm9742}
\crossref{https://doi.org/10.4213/sm9742e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582600}
\zmath{https://zbmath.org/?q=an:1531.41032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022SbMat.213.1470S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000992275100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85165923252}
Linking options:
  • https://www.mathnet.ru/eng/sm9742
  • https://doi.org/10.4213/sm9742e
  • https://www.mathnet.ru/eng/sm/v213/i10/p167
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:353
    Russian version PDF:26
    English version PDF:68
    Russian version HTML:179
    English version HTML:87
    References:65
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025