Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2023, Volume 214, Issue 5, Pages 744–756
DOI: https://doi.org/10.4213/sm9689e
(Mi sm9689)
 

Slim exceptional sets of Waring-Goldbach problems involving squares and cubes of primes

X. Han, H. Liu

School of Mathematics and Statistics, Shandong Normal University, Jinan, P.R. China
References:
Abstract: Let $p_{1},p_{2},\dots,p_{6}$ be prime numbers. First we show that, with at most $O(N^{1/12+\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_{1}^{2}+p_{2}^{2}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$, which improves the previous result $O(N^{1/4+\varepsilon})$ obtained by Y. H. Liu. Moreover, we also prove that, with at most $O(N^{5/12+\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$.
Bibliography: 21 titles.
Keywords: Waring-Goldbach problem, exceptional set, Hardy-Littlewood method.
Funding agency Grant number
National Natural Science Foundation of China 12171286
This research was carried out with the support of the National Natural Science Foundation of China (grant no. 12171286).
Received: 08.11.2021 and 15.11.2022
Bibliographic databases:
Document Type: Article
MSC: Primary 11P32, 11P05; Secondary 11P55
Language: English
Original paper language: Russian

§ 1. Introduction

The famous Waring problem with mixed powers is concerned with the solvability of the equation

$$ \begin{equation} n=n_1^{k_1}+\dots+n_s^{k_s} \end{equation} \tag{1.1} $$
in natural numbers $n_1, \dots, n_s$ for a sufficiently large integer $n$, where $k_1, \dots, k_s$ are integers such that $k_s\geqslant \dots\geqslant k_2 \geqslant k_1\geqslant 2$. Results of this kind are not well known. We refer to [1]–[4] for details.

In 1969 Vaughan [5] proved that any sufficiently large integer $n$ can be represented as the sum of two squares and four cubes of natural numbers by establishing that

$$ \begin{equation} \Xi(n)=\frac{\Gamma^2(3/2)\Gamma^4(4/3) }{\Gamma(7/3)} \mathfrak{S}^*(n)n^{4/3}+ O(n^{4/3-1/48+\varepsilon}), \end{equation} \tag{1.2} $$
where $\Xi(n)$ represents the number of the representations of $n$ in the form
$$ \begin{equation*} n_1^{2}+n_2^{2}+n_3^{3}+n_4^{3}+n_5^{3}+n_6^3 \end{equation*} \notag $$
and
$$ \begin{equation*} \mathfrak{S}^*(n)=\sum_{q=1}^{\infty}\frac{1}{q^{6}}\sum_{\substack{a=1 \\ (a, q)=1}}^{q} \biggl(\sum_{r_{1}=1}^{q}e\biggl(\frac{ar_{1}^{2} }{q}\biggr)\biggr)^{2} \biggl(\sum_{r_{2}=1}^{q}e\biggl(\frac{ar_{2}^{3} }{q}\biggr)\biggr)^{4}e \biggl(-\frac{an}{q}\biggr). \end{equation*} \notag $$

Motivated by the works of Vinogradov [6] and Hua [7], many scholars began to study the Waring-Goldbach problem by restricting the choice of natural numbers $n_1, \dots, n_s$ to primes $p_1, \dots, p_s$ and putting some local conditions on $n$. Then in view of Vaughan’s result it is reasonable to conjecture that every sufficiently large even integer $n$ can be represented as the sum of two squares and four cubes of primes, that is,

$$ \begin{equation} n=p_1^{2}+p_2^{2}+p_3^{3}+p_4^{3}+p_5^{3}+p_6^3. \end{equation} \tag{1.3} $$
It seems that this conjecture is out of reach now. But some approximations have been studied in this direction. Denote by $P_r$ an almost prime with at most $r$ prime factors, counted in accordance with multiplicities. Motivated by the works of Brüdern [8], [9], combining sieve methods and the Hardy-Littlewood method, Cai [10] proved that all sufficiently large even integers $n$ can be represented in the form
$$ \begin{equation*} x_1^{2}+p_1^{2}+p_2^{3}+p_3^{3}+p_4^{3}+p_5^{3}, \end{equation*} \notag $$
with $x$ being a $P_3$.

Set

$$ \begin{equation} \begin{aligned} \, \mathscr{E}=\bigl\{n\in\mathbb{N}\colon 2\mid n, \, n\neq p_{1}^{2}+p_{2}^{2}+p_{3}^{3} +p_{4}^{3}+p_{5}^{3}+p_{6}^{3}\bigr\}. \end{aligned} \end{equation} \tag{1.4} $$
Let $E(N)$ denote the cardinality of $\mathscr{E}\cap(0,N]$. Recently, Y. Liu [11] considered the set of possible exceptions to the representation (1.3) and proved that, for any ${\varepsilon>0}$,
$$ \begin{equation*} E(N)\ll N^{1/4+\varepsilon}. \end{equation*} \notag $$
In this paper, we improve further the above result of Y. Liu by establishing the following theorem.

Theorem 1. Let $E(N)$ be defined as above. Then, for any $\varepsilon>0$,

$$ \begin{equation*} E(N)\ll N^{1/12+\varepsilon}. \end{equation*} \notag $$

In comparison, $1/4=0.25$ and $1/12=0.0833\dots$ . It is easy to find that Theorem 1 improves on Y. Liu’s result by a factor of $3$.

It is also interesting to consider a variant problem by replacing one square of a prime in (1.3) by the cube of a prime, that is,

$$ \begin{equation*} n=p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}. \end{equation*} \notag $$
In 2014, Cai [12] proved that any sufficiently large even integer $n$ can be represented in the form
$$ \begin{equation*} x_1^{2}+p_1^{3}+p_2^{3}+p_3^{3}+p_4^{3}+p_5^{3}, \end{equation*} \notag $$
with $x$ being a $P_{36}$. Subsequently, the almost prime $P_{36}$ was improved to $P_{6}$ by Li and Zhang [13]. Set
$$ \begin{equation} \mathscr{E}_1=\bigl\{n\in\mathbb{N}\colon 2\mid n,\, n\neq p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}\bigr\}. \end{equation} \tag{1.5} $$
Let $E_1(N)$ denote the cardinality of $\mathscr{E}_1\cap(0,N]$. Applying an argument analogous to the proof of Theorem 1 we can obtain the following theorem.

Theorem 2. Let $E_{1}(N)$ be defined as above. Then, for any $\varepsilon>0$,

$$ \begin{equation*} E_{1}(N)\ll N^{5/12+\varepsilon}. \end{equation*} \notag $$

We establish Theorems 1 and 2 by applying the Hardy-Littlewood method. Our improvement benefits from the works of Kawada and Wooley [14] (see Lemmas 13 below) and Zhao [15] (see Lemma 9 in what follows). Unlike the treatment in [11], first we consider a Waring-Goldbach problem related to Theorems 1 and 2, but with fewer summands. We establish a result on an exceptional set for a related Waring-Goldbach problem with fewer summands. Then, with the help of arguments in [14] and [15], we obtain a better result.

Due to the fact that the proof of Theorem 2 is similar to that of Theorem 1, we just sketch its proof in § 5. In § 2 we give the proof of Theorem 1. In §§ 3 and 4, we present several lemmas and the proof of Proposition 2, respectively.

Notation. Throughout this paper, the letter $p$, with or without a subscript, always represents a prime number; $\varepsilon$ denotes a sufficiently small positive constant, which is not necessarily the same at each occurrence. We use $\chi \pmod q$ to denote a Dirichlet character modulo $q$ and $\chi^{0} \pmod q$ to denote the principal character; $f(x)\ll g(x)$ and $f(x)\asymp g(x)$ mean that $f(x)=O(g(x))$ and $f(x)\ll g(x)\ll f(x)$, respectively; $d(n)$ is the divisor function. The letter $c$, with or without subscripts or superscripts, always denotes a positive constant. As usual, we abbreviate $e^{2\pi ix}$ and $\log N$ to $e(x)$ and $L$, respectively.

§ 2. Preliminaries and outline of the method

To explain Lemmas 13 we need to introduce further notation. Let $N$ be a sufficiently large natural number and $\mathbf{A}$ be a subset of $\mathbb{N}$. We take $\overline{\mathbf{A}}$ to be the complement $\mathbb{N}\setminus \mathbf{A}$ of $\mathbf{A}$ to $\mathbb{N}$. For a general interval $(a, b]$ we denote by $(\mathbf{A})_{a}^{b}$ the set $\mathbf{A}\cap(a, b]$ and by $|\mathbf{A}|_{a}^{b}$ the cardinality of $\mathbf{A}\cap(a,b]$. Let $|\overline{\mathbf{A}}|_{a}^{b}$ be the number of natural numbers in the interval $(a,b]$ that do not belong to $\mathbf{A}$. For $\mathbf{A},\mathbf{B}\subseteq\mathbb{N}$ we write

$$ \begin{equation*} \mathbf{A}\pm\mathbf{B}=\bigl\{a\pm b\colon a\in\mathbf{A},\ b\in\mathbf{B}\bigr\}. \end{equation*} \notag $$

When $k\in\mathbb{N}$, a subset $\mathbf{Q}$ of $\mathbb{N}$ is a high-density subset of the $k$th powers if (i) $\mathbf{Q}\subseteq\{n^{k},n\in\mathbb{N}\}$, (ii) $|\mathbf{Q}|_{0}^{N}>N^{1/k-\varepsilon}$.

For $\theta>0$ a set $\mathbf{R}\subseteq\mathbb{N}$ is said to have the complementary density growth exponent smaller than $\theta$ if there exists a positive number $\delta$ such that $|\overline{\mathbf{R}}|<N^{\theta-\delta}$.

When $q\in\mathbb{N}$ and $\mathbf{a}\in \{0,1,\dots,q-1\}$, let $\mathcal{P}_{\mathbf{a}}=\mathcal{P}_{\mathbf{a},q}$ denote

$$ \begin{equation*} \mathcal{P}_{\mathbf{a},q}=\{\mathbf{a}+mq\colon m\in\mathbb{Z}\}. \end{equation*} \notag $$
We call a set $\mathbf{L}$ a union of arithmetic progressions modulo $q$ if
$$ \begin{equation*} \mathbf{L}=\bigcup_{\mathbf{l}\in\mathfrak{L}}P_{\mathbf{l},q} \end{equation*} \notag $$
for some subset $\mathfrak{L}$ of $\{0,1,\dots,q-1\}$. Also let
$$ \begin{equation*} \langle\mathbf{C}\wedge\mathbf{L}\rangle_{a}^{b} =\min_{\mathbf{l}\in\mathfrak{L}}|\mathbf{C}\cap P_{\mathbf{l},q}|_{a}^{b}, \end{equation*} \notag $$
where $\mathbf{C}\subseteq\mathbb{N}$ and $a,b\in\mathbb{Z}$.

When $k\in\mathbb{N}$ and $\mathbf{L}$ is a union of arithmetic progressions modulo $q$, a subset $\mathbf{Q}$ of $\mathbb{N}$ is a high-density subset of the $k$th powers relative to $\mathbf{L}$ if (i) $\mathbf{Q}\subseteq\{n^{k},n\in\mathbb{N}\}$, (ii) $\langle \mathbf{Q} \wedge \mathbf{L} \rangle_{0}^{N} \gg_{q}N^{1/k-\varepsilon}$.

For $\theta>0$ a set $\mathbf{R}\subseteq\mathbb{N}$ is said to have an $\mathbf{L}$-complementary density growth exponent smaller than $\theta$ if $|\overline{\mathbf{R}}\cap\mathbf{L}|_{0}^{N}<N^{\theta-\delta}$.

Lemma 1 (see [14], Theorem 1.2). Let $\mathbf{S}$ be a high-density subset of the squares, and suppose that $\mathbf{A}\subseteq\mathbb{N}$ has a complementary density growth exponent smaller than $1$. Then, whenever $\varepsilon>0$ and the natural number $N$ is sufficiently large in terms of $\varepsilon$, one has

$$ \begin{equation*} |\overline{\mathbf{A}+\mathbf{S}}|_{2N}^{3N} \ll N^{\varepsilon-1/2}|\overline{\mathbf{A}}|_{2N}^{3N}. \end{equation*} \notag $$

Lemma 2 (see [14], Theorem 2.2). Let $\mathbf{L}, \mathbf{M}$ and $\mathbf{N}$ be unions of arithmetic progressions modulo $q$, for some natural number $q$, and suppose that $\mathbf{N}\subseteq\mathbf{L}+\mathbf{M}$. Suppose also that $\mathbf{S}$ is a high-density subset of the squares relative to $\mathbf{L}$ and $\mathbf{A}\subseteq\mathbb{N}$ has an $\mathbf{M}$-complementary density growth exponent smaller than $1$. Then, whenever $\varepsilon>0$ and the natural number $N$ is sufficiently large in terms of $\varepsilon$, one has

$$ \begin{equation*} |\overline{\mathbf{A}+\mathbf{S}}\cap\mathbf{N}|_{2N}^{3N} \ll_{q}N^{\varepsilon-1/2}|\overline{\mathbf{A}}\cap\mathbf{M}|_{N}^{3N}. \end{equation*} \notag $$

Lemma 3 (see [14], Theorem 1.3, (a)). Let $\mathbf{C}$ be a high-density subset of the cubes, and suppose that $\mathbf{A}\subseteq\mathbb{N}$ has a complementary density growth exponent smaller than $\theta$ for some positive number $\theta$. Then, whenever $\varepsilon>0$ and the natural number $N$ is sufficiently large in terms of $\varepsilon$, one has

$$ \begin{equation*} |\overline{\mathbf{A}+\mathbf{C}}|_{2N}^{3N} \ll N^{\varepsilon-1/3}|\overline{\mathbf{A}}|_{2N}^{3N} +N^{\varepsilon-1}(|\overline{\mathbf{A}}|_{2N}^{3N})^{2}. \end{equation*} \notag $$

In order to prove Theorem 1, first we apply the Hardy-Littlewood method to study the problem

$$ \begin{equation*} N=p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}. \end{equation*} \notag $$
Let $N$ be a sufficiently large positive integer, and let
$$ \begin{equation} P=N^{3/20-2\varepsilon}\quad\text{and} \quad Q=N^{17/20+\varepsilon}. \end{equation} \tag{2.1} $$
By Dirichlet’s lemma on rational approximation, each $\alpha\in[1/Q,1+1/Q]$ can be written in the form
$$ \begin{equation*} \alpha=\frac{a}{q}+\lambda, \qquad |\lambda|\leqslant \frac{1}{qQ}, \end{equation*} \notag $$
for integers $a$ and $q$ such that $1\leqslant a\leqslant q\leqslant Q$ and $(a,q)=1$. Define
$$ \begin{equation} \mathfrak{M}=\bigcup_{q\leqslant P}\bigcup_{\substack{1\leqslant a\leqslant q \\ (a,q)=1}}\mathfrak{M}(q,a) \quad\text{and}\quad \mathfrak{m} =\biggl[\frac{1}{Q},1+\frac{1}{Q}\biggr]\setminus\mathfrak{M}, \end{equation} \tag{2.2} $$
where
$$ \begin{equation*} \mathfrak{M}(q,a)=\biggl[\frac{a}{q}-\frac{1}{qQ},\frac{a}{q}+\frac{1}{qQ}\biggr]. \end{equation*} \notag $$

For $k=2,3$ and $P_{k}=(N/16)^{1/k}$ we set

$$ \begin{equation} f_{k}(\alpha)=\sum_{P_{k}<p\leqslant 2P_{k}}(\log p)e(p^{k}\alpha). \end{equation} \tag{2.3} $$
Let
$$ \begin{equation*} r(n)=\sum_{\substack{n=p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}\\ P_{2}<p_{1}\leqslant 2P_{2}\\ P_{3}<p_{2},p_{3},p_{4}\leqslant 2P_{3}}}\prod_{j=1}^{4}\log p_{j}. \end{equation*} \notag $$
By orthogonality and (2.2), one has
$$ \begin{equation} r(n)=\int_{0}^{1}f_{2}(\alpha)f_{3}^{3}(\alpha)e(-n\alpha)\,\mathrm{d}\alpha =\biggl\{\int_{\mathfrak{M}} +\int_{\mathfrak{m}}\biggr\}f_{2}(\alpha)f_{3}^{3}(\alpha)e(-n\alpha)\,\mathrm{d}\alpha. \end{equation} \tag{2.4} $$

Set

$$ \begin{equation*} C_{k}(\chi,a)=\sum_{h=1}^{q}\overline{\chi(h)}e\biggl(\frac{ah^{k}}{q}\biggr)\quad\text{and} \quad C_{k}(q,a)=C_{k}(\chi^{0},a), \end{equation*} \notag $$
where $\chi\pmod q$ is a Dirichlet character and $k=2,3$. Let
$$ \begin{equation*} B(n,q)=\sum_{\substack{1\leqslant a\leqslant q\\(a,q)=1}} C_{2}(q,a)C_{3}(q,a)C_{3}(q,a)C_{3}(q,a)e\biggl(-\frac{an}{q}\biggr) \end{equation*} \notag $$
and
$$ \begin{equation} A(n,q)=\frac{B(n,q)}{\varphi^{4}(q)}, \qquad \mathfrak{S}(n)=\sum_{q=1}^{\infty}A(n,q). \end{equation} \tag{2.5} $$

Proposition 1. Let $P$, $Q$ and $\mathfrak{M}$ be defined in (2.1) and (2.2), respectively. Then for $n\in[N/4,N]$ and any $A>0$,

$$ \begin{equation} \int_{\mathfrak{M}}f_{2}(\alpha)f_{3}^{3}(\alpha)e(-n\alpha)\,\mathrm{d}\alpha =\frac{1}{54}\mathfrak{S}(n)\mathfrak{J}(n)+O(N^{1/2}L^{-A}). \end{equation} \tag{2.6} $$
Here $\mathfrak{S}(n)$ is the singular series defined in (2.5), which is absolutely convergent and satisfies
$$ \begin{equation} (\log\log n)^{-c^{*}}\ll\mathfrak{S}(n)\ll d(n), \end{equation} \tag{2.7} $$
where $n$ is an integer satisfying $n\equiv0\pmod2$ and $c^{*}$ is an absolute positive constant; $\mathfrak{J}(n)$ is defined by
$$ \begin{equation*} \mathfrak{J}(n)=\sum_{\substack{m_{1}+m_{2}+m_{3}+m_{4}=n\\P_{2}^{2}<m_{1}\leqslant (2P_{2})^{2}\\ P_{3}^{2}<m_{2},m_{3},m_{4}\leqslant (2P_{3})^{2}}}m_{1}^{-1/2} (m_{2}m_{3}m_{4})^{-2/3} \end{equation*} \notag $$
and satisfies
$$ \begin{equation} \mathfrak{J}(n)\asymp N^{1/2}. \end{equation} \tag{2.8} $$

The proof of Proposition 1 is a standard application of the iterative argument developed by Liu and Zhan (see [16], [17] and other papers). Thus we omit its proof here.

We set

$$ \begin{equation*} \begin{gathered} \, \mathscr{E}_{*}=\bigl\{n\in\mathbb{N}\colon n\equiv0\ (\operatorname{mod} 2),\ n\neq p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}\bigr\}, \\ \mathscr{E}_{**}=\bigl\{n\in\mathbb{N}\colon n\equiv1\ (\operatorname{mod} 2),\ n\neq p_{1}^{2}+p_{2}^{2}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}\bigr\} \end{gathered} \end{equation*} \notag $$
and
$$ \begin{equation} E_{*}(N)=|\mathscr{E}_{*}|_{0}^{N}, \qquad E_{**}(N)=|\mathscr{E}_{**}|_{0}^{N}. \end{equation} \tag{2.9} $$

Proposition 2. Let $E_{*}(N)$ be defined in (2.9). Then

$$ \begin{equation*} E_{*}(N)\ll N^{1-1/12+\varepsilon}. \end{equation*} \notag $$

We prove this proposition in § 4.

Proof of Theorem 1. Let the integers $N_{j}$ for $j>0$ be defined by the following recursive formula
$$ \begin{equation} N_{0}=\biggl\lceil \frac{N}{2} \biggr\rceil, \qquad N_{j+1}=\biggl\lceil \frac{2N_{j}}{3} \biggr\rceil, \quad j\geqslant 0, \end{equation} \tag{2.10} $$
where $\lceil N \rceil$ denotes the least integer not smaller than $N$. In addition, let $J$ be the least positive integer satisfying $N_{J}=2$; then $J=O(L)$.

We define

$$ \begin{equation*} \begin{gathered} \, \mathbf{A}_{1}=\bigl\{p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}\bigr\}, \qquad \mathbf{S}_{1}=\{p^{2}\}, \qquad \mathbf{L}_{1}=\bigl\{n\in\mathbb{N}\colon n\equiv1\ (\operatorname{mod}{24})\bigr\}, \\ \mathbf{M}_{1}=\bigl\{n\in\mathbb{N}\colon n\equiv0\ (\operatorname{mod} 2)\bigr\} \quad\text{and}\quad \mathbf{N}_{1}=\bigl\{n\in\mathbb{N}\colon n\equiv1\ (\operatorname{mod} 2)\bigr\}. \end{gathered} \end{equation*} \notag $$

It is easy to see that $\mathbf{L}_{1}$ is a union of arithmetic progressions modulo $24$, and $\mathbf{M}_{1}$ and $\mathbf{N}_{1}$ are unions of arithmetic progressions modulo $2$ which satisfy $\mathbf{N}_{1}\subseteq\mathbf{L}_{1}+\mathbf{M}_{1}$. Then, we deduce from the Prime Number Theorem for arithmetic progressions that

$$ \begin{equation*} \langle\mathbf{S}_{1}\wedge\mathbf{L}_{1}\rangle_{0}^{N}\gg N^{1/2}L^{-1}; \end{equation*} \notag $$
hence $\mathbf{S}_{1}$ is a high-density subset of the squares relative to $\mathbf{L}_{1}$. Using Proposition 2 we obtain
$$ \begin{equation*} |\overline{\mathbf{A}_{1}}\cap\mathbf{M}_{1}|_{0}^{N} =E_{*}(N)\ll N^{1-1/12+\varepsilon}, \end{equation*} \notag $$
hence $\mathbf{A}_{1}$ has $\mathbf{M}_{1}$-complementary density growth exponent smaller than $1$. By Lemma 2
$$ \begin{equation*} |\mathscr{E}_{**}|_{2N}^{3N}\ll N^{\varepsilon-1/2}|\mathscr{E}_{*}|_{N}^{3N} \ll N^{\varepsilon-1/2}E_{*}(3N)\ll N^{1/2-1/12+\varepsilon}. \end{equation*} \notag $$
It follows from (2.10) that
$$ \begin{equation} E_{**}(N)\leqslant 3+\sum_{j=1}^{J}|\mathscr{E}_{**}|_{2N_{j}}^{3N_{j}} \ll N^{1/2-1/12+\varepsilon}. \end{equation} \tag{2.11} $$
Similarly, let
$$ \begin{equation*} \mathbf{A}_{2}=\bigl\{p_{1}^{2}+p_{2}^{2}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}\bigr\} \quad\text{and}\quad \mathbf{C}_{2} =\{p^{3}\}. \end{equation*} \notag $$
Then we deduce from the Prime Number Theorem that
$$ \begin{equation*} |\mathbf{C}_{2}|_{0}^{N}>N^{1/3-\varepsilon}; \end{equation*} \notag $$
hence $\mathbf{C}_{2}$ is a high-density subset of the cubes. By (2.11) we obtain
$$ \begin{equation*} |\overline{\mathbf{A}_{2}}|_{0}^{N}\ll N^{1/2-1/12+\varepsilon}, \end{equation*} \notag $$
thus, $\mathbf{A}_{2}$ has a complementary density growth exponent smaller than $1/2$. By Lemma 3 and (1.4),
$$ \begin{equation*} \begin{aligned} \, |\mathscr{E}|_{2N}^{3N}&\ll N^{\varepsilon-1/3}|\mathscr{E}_{**}|_{2N}^{3N} +N^{\varepsilon-1}(|\mathscr{E}_{**}|_{N}^{3N})^{2} \\ &\ll N^{\varepsilon-1/3}E_{**}(3N)+N^{\varepsilon-1}E_{**}^{2}(3N) \ll N^{1/6-1/12+\varepsilon}. \end{aligned} \end{equation*} \notag $$
Consequently, we deduce from (2.10) that
$$ \begin{equation*} E(N)\leqslant 3+\sum_{j=1}^{J}|\mathscr{E}|_{2N_{j}}^{3N_{j}}\ll N^{1/6-1/12 +\varepsilon}, \end{equation*} \notag $$
which implies Theorem 1.

§ 3. Some lemmas

Lemma 4 (see [18], Theorem 1.1). Suppose that $\alpha$ is a real number and

$$ \begin{equation*} \alpha=\frac{a}{q}+\lambda, \end{equation*} \notag $$
where
$$ \begin{equation*} (a,q)=1, \qquad 1\leqslant a\leqslant Q \quad\textit{and}\quad |\lambda|\leqslant \frac{1}{qQ}. \end{equation*} \notag $$
Then
$$ \begin{equation*} f_{k}(\alpha) \ll d^{r_{k}}(q)\biggl(\sqrt{q(1+|\lambda| N) P_{k}} +P_{k}^{4/5}+\frac{P_{k}}{\sqrt{q(1+|\lambda| N)}}\biggr) L^{c}, \end{equation*} \notag $$
where
$$ \begin{equation*} r_{k}=\frac{1}{2}+\frac{\log k}{\log 2}, \end{equation*} \notag $$
and $c$ is an absolute positive constant.

Lemma 5. Suppose that $\alpha$ is a real number and there exist integers $a\in\mathbb{Z}$ and $q\in\mathbb{N}$ such that

$$ \begin{equation*} (a,q)=1, \qquad 1\leqslant q\leqslant N^{1/2}\quad\textit{and} \quad |q\alpha-a|\leqslant N^{-1/2}. \end{equation*} \notag $$
Then
$$ \begin{equation} f_{k}(\alpha) \ll P_{k}^{1-\eta_{k}+\varepsilon} +\frac{P_{k}^{1+\varepsilon}}{\sqrt{q(1+N|\alpha-a/q|)}}, \qquad k=2,3, \end{equation} \tag{3.1} $$
where
$$ \begin{equation*} \eta_{2}=\frac{1}{8}\quad\textit{and} \quad \eta_{3}=\frac{1}{12}. \end{equation*} \notag $$

The proof of the upper bound for $f_{2}(\alpha)$ and $f_{3}(\alpha)$ can be found in Theorem 3 of Kumchev [19] and Lemma 2.3 of Zhao [20], respectively.

We define

$$ \begin{equation*} \mathfrak{N}(q,a)=\biggl[\frac{a}{q}-\frac{1}{qN^{5/6}},\,\frac{a}{q}+\frac{1}{qN^{5/6}}\biggr] \quad\text{and}\quad \mathfrak{N}=\bigcup_{q\leqslant N^{1/6}}\bigcup_{\substack{1\leqslant a\leqslant q\\ (a,q)=1}}\mathfrak{N}(q,a). \end{equation*} \notag $$
If we write
$$ \begin{equation*} \mathfrak{m}_{1}=\mathfrak{m}\cap\mathfrak{N} \quad\text{and}\quad \mathfrak{m}_{2}=\mathfrak{m}\setminus\mathfrak{N}, \end{equation*} \notag $$
then
$$ \begin{equation} \mathfrak{m}=\mathfrak{m}_{1}\cup\mathfrak{m}_{2}. \end{equation} \tag{3.2} $$

Lemma 6. Suppose $\alpha\in \mathfrak{m}_{1}$. Then

$$ \begin{equation*} f_{3}(\alpha)\ll N^{4/15+\varepsilon}. \end{equation*} \notag $$

Proof. If $\alpha\in \mathfrak{m}_{1}$, then
$$ \begin{equation*} 1 \leqslant a \leqslant q \leqslant N^{1/6}, \qquad |q \alpha-a| \leqslant N^{-5/6}\quad\text{and} \quad (a,q)=1. \end{equation*} \notag $$
Since $\alpha\notin \mathfrak{M}$, we have either $q>P$ or $|q\alpha-a|>Q^{-1}$. We use Lemma 4 and obtain the upper bound for $f_{3}(\alpha)$. The lemma is proved.

Lemma 7. Suppose $\alpha\in \mathfrak{m}_{2}$. Then

$$ \begin{equation*} f_{2}(\alpha)\ll N^{1/2-1/16+\varepsilon} \quad\textit{and}\quad f_{3}(\alpha)\ll N^{1/3-1/36+\varepsilon}. \end{equation*} \notag $$

Proof. One has
$$ \begin{equation*} 1 \leqslant a \leqslant q \leqslant N^{1/2}, \qquad|q \alpha-a| \leqslant N^{-1/2}\quad\text{and} \quad(a, q)=1. \end{equation*} \notag $$
Since $\alpha\in\mathfrak{m}_{2}=\mathfrak{m}\setminus\mathfrak{N}$, we have either $q>N^{1/6}$ or $N|q\alpha-a|>N^{1/6}$. We use Lemma 5 and obtain the upper bounds for $f_{2}(\alpha)$ and $f_{3}(\alpha)$. The lemma is proved.

Lemma 8. The inequality

$$ \begin{equation*} \int_{0}^{1}|f_{2}^{2}(\alpha)f_{3}^{4}(\alpha)|\,\mathrm{d}\alpha\ll N^{4/3+\varepsilon} \end{equation*} \notag $$
holds.

We can deduce this from Hua’s lemma. We can also find this result in Lemma 2.6 of Zhao [21].

Lemma 9 (see [15], Lemma 3.1). For $k\geqslant 3$ let $\mathscr{M}$ be the union of intervals $\mathscr{M}(q,a)$ for

$$ \begin{equation*} 1\leqslant a\leqslant q\leqslant P^{k2^{1-k}}, \qquad (a,q)=1, \end{equation*} \notag $$
where
$$ \begin{equation*} \mathscr{M}(q,a)=\bigl\{\alpha\colon |q\alpha-a|\leqslant P^{k(2^{1-k}-1)}\bigr\}. \end{equation*} \notag $$
For $u\geqslant 0$ let
$$ \begin{equation*} \omega_{k}(p^{uk+v})= \begin{cases} kp^{-u-1/2}, & v=1, \\ p^{-u-1}, & 2\leqslant v\leqslant k, \end{cases} \end{equation*} \notag $$
and
$$ \begin{equation*} \mathscr{J}_{0}=\sup_{\beta\in[0,1)}\int_{\mathscr{M}} \frac{\omega_{k}^{2}(q)|h^{2}(\alpha+\beta)|}{(1+P^{k}|\alpha-a/q|)^{2}}\,\mathrm{d}\alpha. \end{equation*} \notag $$
Suppose that $G(\alpha)$ and $h(\alpha)$ are integrable functions of period $1$. Let
$$ \begin{equation*} g(\alpha)=g_{\mathcal{A}}(\alpha)=\sum_{x\in\mathcal{A}}e(x^{k}\alpha), \quad\textit{where } \mathcal{A}\subseteq(P,2P]\cap\mathbb{N}, \end{equation*} \notag $$
and let $\mathfrak{m}\subseteq[0,1)$ be a measurable set. Then
$$ \begin{equation*} \int_{\mathfrak{m}}g(\alpha)G(\alpha)h(\alpha)\,\mathrm{d}\alpha\ll P\mathscr{J}_{0}^{1/4} \biggl(\int_{\mathfrak{m}}|G(\alpha)|^{2}\,\mathrm{d}\alpha\biggr)^{1/4} \mathscr{J}^{1/2}(m)+P^{1-2^{-k}+\varepsilon}\mathscr{J}(m), \end{equation*} \notag $$
where
$$ \begin{equation*} \mathscr{J}(m)=\int_{\mathfrak{m}}|G(\alpha)h(\alpha)|\,\mathrm{d}\alpha. \end{equation*} \notag $$

Lemma 10. For $\gamma\in\mathbb{R}$ set

$$ \begin{equation*} \mathcal{L}(\gamma)=\sum_{q\leqslant P_{3}}\sum_{\substack{1\leqslant a\leqslant q\\ (a,q)=1}} \int_{|\alpha-a/q|\leqslant P_{3}} \frac{\omega_{3}^{2}(q)d^{c}(q)|\sum_{P_{3}\leqslant p\leqslant 2P_{3}} e(p^{3}(\alpha+\gamma))|^{2}}{1+|\alpha-a/q|P_{3}^{3}}\, \mathrm{d}\alpha. \end{equation*} \notag $$
Then
$$ \begin{equation*} \mathcal{L}(\gamma)\ll P_{3}^{2}N^{-1+\varepsilon} \end{equation*} \notag $$
uniformly for $\gamma\in\mathbb{R}$. Here $c$ is an absolute constant.

We obtain this lemma by taking $k=3$ and $P=Q=P_{3}$ in Lemma 2.2 of Zhao [15].

§ 4. Proof of Proposition 2

In this section we give the proof of Proposition 2. Let

$$ \begin{equation*} U(-\alpha)=\sum_{n\in(\mathscr{E}_{*})_{0}^{N}}e(-n\alpha). \end{equation*} \notag $$
Noting that $r(n)=0$ for all $n\in(\mathscr{E}_{*})_{0}^{N}$, by (2.4) one has
$$ \begin{equation} \begin{aligned} \, \notag 0&=\sum_{n\in(\mathscr{E}_{*})_{0}^{N}}r(n) =\sum_{n\in(\mathscr{E}_{*})_{0}^{N}}\int_{0}^{1}f_{2}(\alpha)f_{3}^{3}(\alpha) e(-n\alpha)\,\mathrm{d}\alpha \\ &=\biggl\{\int_{\mathfrak{M}}+\int_{\mathfrak{m}}\biggr\}f_{2}(\alpha)f_{3}^{3}(\alpha) U(-\alpha)\,\mathrm{d}\alpha. \end{aligned} \end{equation} \tag{4.1} $$
We use Proposition 1 and obtain
$$ \begin{equation*} \begin{aligned} \, &\int_{\mathfrak{M}}f_{2}(\alpha)f_{3}^{3}(\alpha)U(-\alpha)\,\mathrm{d}\alpha =\sum_{n\in(\mathscr{E}_{*})_{0}^{N}} \int_{\mathfrak{M}}f_{2}(\alpha)f_{3}^{3}(\alpha)e(-n\alpha)\,\mathrm{d}\alpha \\ &\qquad =\sum_{n\in(\mathscr{E}_{*})_{0}^{N}}\biggl\{\frac{1}{54}\mathfrak{S}(n)\mathfrak{J}(n) +O(N^{1/2}L^{-A})\biggr\} \gg E_{*}(N)N^{1/2-\varepsilon}. \end{aligned} \end{equation*} \notag $$
This, in combination with (4.1), gives
$$ \begin{equation} \biggl|\int_{\mathfrak{m}}f_{2}(\alpha)f_{3}^{3}(\alpha) U(-\alpha)\,\mathrm{d}\alpha\biggr|\gg E_{*}(N)N^{1/2-\varepsilon}. \end{equation} \tag{4.2} $$
On the other hand, by Cauchy’s inequality
$$ \begin{equation} \begin{aligned} \, \notag \biggl|\int_{\mathfrak{m}}f_{2}(\alpha)f_{3}^{3}(\alpha)U(-\alpha)\,\mathrm{d}\alpha\biggr| &\ll\biggl(\int_{\mathfrak{m}}|f_{2}^{2}(\alpha)f_{3}^{6}(\alpha)| \,\mathrm{d}\alpha\biggr)^{1/2} \biggl(\int_{\mathfrak{m}}|U(-\alpha)|^{2}\,\mathrm{d}\alpha\biggr)^{1/2} \\ &\ll \biggl(\int_{\mathfrak{m}}|f_{2}^{2}(\alpha)f_{3}^{6}(\alpha)| \,\mathrm{d}\alpha\biggr)^{1/2}E_{*}^{1/2}(N). \end{aligned} \end{equation} \tag{4.3} $$

Let

$$ \begin{equation*} \mathscr{J}(t)=\int_{\mathfrak{m}_{2}}|f_{2}^{2}(\alpha)f_{3}^{t}(\alpha)|\,\mathrm{d}\alpha, \qquad 1\leqslant t\leqslant 6. \end{equation*} \notag $$
Taking
$$ \begin{equation*} g(\alpha)=f_{3}(\alpha), \qquad h(\alpha)=f_{3}(-\alpha)\quad\text{and} \quad G(\alpha)=|f_{2}^{2}(\alpha)f_{3}^{4}(\alpha)| \end{equation*} \notag $$
in Lemma 9 we obtain
$$ \begin{equation} \begin{aligned} \, \notag \mathscr{J}(6) &=N^{1/3}\mathscr{J}_{0}^{1/4} \biggl(\int_{\mathfrak{m}_{2}}|f_{2}^{4}(\alpha)f_{3}^{8}(\alpha)|\, \mathrm{d}\alpha\biggr)^{1/4}\mathscr{J}^{1/2}(5) +N^{7/24+\varepsilon}\mathscr{J}(5) \\ &=:H_{1}+H_{2}, \end{aligned} \end{equation} \tag{4.4} $$
where
$$ \begin{equation*} \mathscr{J}_{0}=\sup_{\beta\in[0,1)}\sum_{q\leqslant P_{3}^{3/4}} \sum_{\substack{1\leqslant a\leqslant q\\ (a,q)=1}}\int_{\mathscr{M}(q,a)} \frac{\omega_{3}^{2}(q)|h^{2}(\alpha+\beta)|}{(1+P_{3}^{3}|\alpha-a/q|)^{2}}\,\mathrm{d}\alpha \end{equation*} \notag $$
for
$$ \begin{equation*} \mathscr{M}(q,a)=\bigl\{\alpha\colon |q\alpha-a|\leqslant P_{3}^{-9/4}\bigr\}. \end{equation*} \notag $$
We use Lemma 10 and obtain
$$ \begin{equation} \mathscr{J}_{0}\ll \mathcal{L}(\gamma)\ll P_{3}^{2}N^{-1+\varepsilon} \ll N^{-1/3+\varepsilon}. \end{equation} \tag{4.5} $$
For $\mathscr{I}(5)$, by Cauchy’s inequality and Lemma 8 we have
$$ \begin{equation} \mathscr{J}(5)\leqslant \mathscr{J}^{1/2}(6) \biggl(\int_{\mathfrak{m}_{2}}|f_{2}^{2}(\alpha)f_{3}^{4}(\alpha)| \,\mathrm{d}\alpha\biggr)^{1/2}\ll N^{2/3+\varepsilon}\mathscr{J}^{1/2}(6). \end{equation} \tag{4.6} $$
For the integral in (4.4) we use Lemma 7 and obtain
$$ \begin{equation} \int_{\mathfrak{m}_{2}}|f_{2}^{4}(\alpha)f_{3}^{8}(\alpha)|\,\mathrm{d}\alpha \ll \mathscr{J}(6)\sup_{\alpha\in\mathfrak{m}_{2}}f_{2}^{2}(\alpha)f_{3}^{2}(\alpha) \ll N^{107/72+\varepsilon}\mathscr{J}(6). \end{equation} \tag{4.7} $$
We deduce from (4.5)(4.7) that
$$ \begin{equation} H_{1}\ll N^{275/288+\varepsilon}\mathscr{J}^{1/2}(6). \end{equation} \tag{4.8} $$
It follows from (4.6) that
$$ \begin{equation} H_{2}\ll N^{23/24+\varepsilon}\mathscr{J}^{1/2}(6). \end{equation} \tag{4.9} $$
Substituting (4.8) and (4.9) into (4.4) one has
$$ \begin{equation*} \mathscr{J}(6)\ll N^{{275}/{288}+\varepsilon}\mathscr{J}^{1/2}(6) +N^{{23}/{24}+\varepsilon}\mathscr{J}^{1/2}(6). \end{equation*} \notag $$
Therefore,
$$ \begin{equation} \mathscr{J}(6)\ll N^{{23}/{12}+\varepsilon}. \end{equation} \tag{4.10} $$
Applying Lemmas 6 and 8 to estimate $\displaystyle \int_{\mathfrak{m}_{1}}|f_{2}^{2}(\alpha)f_{3}^{6}(\alpha)|\,\mathrm{d}\alpha$ we obtain
$$ \begin{equation} \int_{\mathfrak{m}_{1}}|f_{2}^{2}(\alpha)f_{3}^{6}(\alpha)|\,\mathrm{d}\alpha \ll\sup_{\alpha\in\mathfrak{m}_{1}}|f_{3}^{2}(\alpha)| \int_{0}^{1}|f_{2}^{2}(\alpha)f_{3}^{4}(\alpha)|\,\mathrm{d}\alpha \ll N^{{28}/{15}+\varepsilon}. \end{equation} \tag{4.11} $$
We deduce from (3.2), (4.10) and (4.11) that
$$ \begin{equation} \int_{\mathfrak{m}}|f_{2}^{2}(\alpha)f_{3}^{6}(\alpha)|\,\mathrm{d}\alpha \ll N^{{23}/{12}+\varepsilon}. \end{equation} \tag{4.12} $$
Substituting (4.2) and (4.12) into (4.3) we have
$$ \begin{equation*} \begin{aligned} \, E_{*}(N)N^{1/2-\varepsilon}\ll (N^{{23}/{12} +\varepsilon})^{1/2}E_{*}^{1/2}(N), \end{aligned} \end{equation*} \notag $$
which implies that
$$ \begin{equation*} E_{*}(N)\ll N^{1-1/12+\varepsilon}. \end{equation*} \notag $$
This completes the proof of Proposition 2.

§ 5. Sketch of the proof of Theorem 2

Similarly to the proof of Theorem 1, we also prove Theorem 2. First we consider the cubic Waring-Goldbach problem

$$ \begin{equation*} n=p_{1}^{3}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}. \end{equation*} \notag $$
Set
$$ \begin{equation*} \begin{aligned} \, \mathscr{E}_{2} &=\bigl\{n\in\mathbb{N}\colon n\equiv 1\ (\operatorname{mod} 2),n\not\equiv 0, \pm2\ (\operatorname{mod} 9), n\not\equiv 0\ (\operatorname{mod} 7), \\ &\qquad n\neq p_{1}^{3}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}\bigr\}, \end{aligned} \end{equation*} \notag $$
and let $E_{2}(N)$ denote the cardinality of $\mathscr{E}_{2}\cap(0,N]$. Zhao [15] proved that
$$ \begin{equation*} E_{2}(N)\ll N^{1-1/12+\varepsilon}. \end{equation*} \notag $$

Let

$$ \begin{equation*} \mathbf{A}=\bigl\{p_{1}^{3}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}\bigr\}, \qquad \mathbf{S}=\{p^{2}\}. \end{equation*} \notag $$
Similarly to the proof of Theorem 1 we obtain
$$ \begin{equation*} |\overline{\mathbf{A}}|_{0}^{N}\ll N^{1-1/12+\varepsilon}. \end{equation*} \notag $$
By Lemma 1,
$$ \begin{equation*} |\mathscr{E}_1|_{2N}^{3N}\ll N^{1/2-1/12+\varepsilon}, \end{equation*} \notag $$
where $\mathscr{E}_1$ was defined in (1.5). It follows from (2.10) that
$$ \begin{equation*} E_{1}(N)\ll \sum_{j=1}^{J}|\mathscr{E}|_{2N_{j}}^{3N_{j}} \ll N^{1/2-1/12+\varepsilon}. \end{equation*} \notag $$
This completes the proof of Theorem 2.

Acknowledgement

The author would like to thank the referees for many useful comments made.


Bibliography

1. J. Brüdern, “On Waring's problem for two cubes and two small cubes”, Acta Arith., 155:3 (2012), 271–285  crossref  mathscinet  zmath
2. J. Brüdern, “On the asymptotic formula in Waring's problem: one square and three fifth powers”, Glasg. Math. J., 57:3 (2015), 681–692  crossref  mathscinet  zmath
3. R. C. Vaughan, The Hardy-Littlewood method, Cambridge Tracts in Math., 125, 2nd ed., Cambridge Univ. Press, Cambridge, 1997, xiv+232 pp.  crossref  mathscinet  zmath
4. T. D. Wooley, “On Waring's problem for intermediate powers”, Acta Arith., 176:3 (2016), 241–247  crossref  mathscinet  zmath
5. R. C. Vaughan, On the representation of numbers as sums of squares, cubes and fourth powers and on the representation of numbers as sums of powers of primes, Ph.D. thesis, London Univ., London, 1969
6. I. Vinogradow, “Some theorems concerning the theory of primes”, Rec. Math. [Mat. Sbornik] N.S., 2(44):2 (1937), 179–195  mathnet  zmath
7. Loo-Keng Hua, “Some results in additive prime-number theory”, Quart. J. Math. Oxford Ser. (2), 9:1 (1938), 68–80  crossref  mathscinet  zmath  adsnasa
8. J. Brüdern, Sieves, the circle method and Waring's problem for cubes, Mathematica Gottingenis, 51, Habilitationsschrift, Göttingen, 1991
9. J. Brüdern, “A sieve approach to the Waring-Goldbach problem. I. Sums of four cubes”, Ann. Sci. École Norm. Sup. (4), 28:4 (1995), 461–476  crossref  mathscinet  zmath
10. Yingchun Cai, “Waring-Goldbach problem: two squares and higher powers”, J. Théor. Nombres Bordeaux, 28:3 (2016), 791–810  crossref  mathscinet  zmath
11. Yuhui Liu, “On a Waring-Goldbach problem involving squares and cubes”, Math. Slovaca, 69:6 (2019), 1249–1262  crossref  mathscinet  zmath
12. Yingchun Cai, “The Waring-Goldbach problem: one square and five cubes”, Ramanujan J., 34:1 (2014), 57–72  crossref  mathscinet  zmath
13. Jinjiang Li and Min Zhang, “On the Waring-Goldbach problem for one square and five cubes”, Int. J. Number Theory, 14:9 (2018), 2425–2440  crossref  mathscinet  zmath
14. K. Kawada and T. D. Wooley, “Relations between exceptional sets for additive problems”, J. Lond. Math. Soc. (2), 82:2 (2010), 437–458  crossref  mathscinet  zmath
15. Lilu Zhao, “On the Waring-Goldbach problem for fourth and sixth powers”, Proc. Lond. Math. Soc. (3), 108:6 (2014), 1593–1622  crossref  mathscinet  zmath
16. Jianya Liu, “Enlarged major arcs in additive problems. II”, Proc. Steklov Inst. Math., 276 (2012), 176–192  crossref
17. Jianya Liu and Tao Zhan, “Sums of five almost equal prime squares. II”, Sci. China Ser. A, 41:7 (1998), 710–722  crossref  mathscinet  zmath  adsnasa
18. Xiumin Ren, “On exponential sums over primes and application in Waring-Goldbach problem”, Sci. China Ser. A, 48:6 (2005), 785–797  crossref  mathscinet  zmath  adsnasa
19. A. V. Kumchev, “On Weyl sums over primes and almost primes”, Michigan Math. J., 54:2 (2006), 243–268  crossref  mathscinet  zmath
20. Lilu Zhao, “The additive problem with one cube and three cubes of primes”, Michigan Math. J., 63:4 (2014), 763–779  crossref  mathscinet  zmath
21. Li Lu Zhao, “The exceptional set for sums of unlike powers of primes”, Acta Math. Sin. (Engl. Ser.), 30:11 (2014), 1897–1904  crossref  mathscinet  zmath

Citation: X. Han, H. Liu, “Slim exceptional sets of Waring-Goldbach problems involving squares and cubes of primes”, Sb. Math., 214:5 (2023), 744–756
Citation in format AMSBIB
\Bibitem{HanLiu23}
\by X.~Han, H.~Liu
\paper Slim exceptional sets of Waring-Goldbach problems involving squares and cubes of primes
\jour Sb. Math.
\yr 2023
\vol 214
\issue 5
\pages 744--756
\mathnet{http://mi.mathnet.ru//eng/sm9689}
\crossref{https://doi.org/10.4213/sm9689e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4662653}
\zmath{https://zbmath.org/?q=an:1537.11128}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023SbMat.214..744H}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001095751800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85176609672}
Linking options:
  • https://www.mathnet.ru/eng/sm9689
  • https://doi.org/10.4213/sm9689e
  • https://www.mathnet.ru/eng/sm/v214/i5/p140
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:316
    Russian version PDF:29
    English version PDF:70
    Russian version HTML:117
    English version HTML:127
    References:62
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024