|
Slim exceptional sets of Waring-Goldbach problems involving squares and cubes of primes
X. Han, H. Liu School of Mathematics and Statistics, Shandong Normal University, Jinan, P.R. China
Abstract:
Let $p_{1},p_{2},\dots,p_{6}$ be prime numbers. First we show that, with at most $O(N^{1/12+\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_{1}^{2}+p_{2}^{2}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$, which improves the previous result $O(N^{1/4+\varepsilon})$ obtained by Y. H. Liu. Moreover, we also prove that, with at most $O(N^{5/12+\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$.
Bibliography: 21 titles.
Keywords:
Waring-Goldbach problem, exceptional set, Hardy-Littlewood method.
Received: 08.11.2021 and 15.11.2022
§ 1. Introduction The famous Waring problem with mixed powers is concerned with the solvability of the equation
$$
\begin{equation}
n=n_1^{k_1}+\dots+n_s^{k_s}
\end{equation}
\tag{1.1}
$$
in natural numbers $n_1, \dots, n_s$ for a sufficiently large integer $n$, where $k_1, \dots, k_s$ are integers such that $k_s\geqslant \dots\geqslant k_2 \geqslant k_1\geqslant 2$. Results of this kind are not well known. We refer to [1]–[4] for details. In 1969 Vaughan [5] proved that any sufficiently large integer $n$ can be represented as the sum of two squares and four cubes of natural numbers by establishing that
$$
\begin{equation}
\Xi(n)=\frac{\Gamma^2(3/2)\Gamma^4(4/3) }{\Gamma(7/3)} \mathfrak{S}^*(n)n^{4/3}+ O(n^{4/3-1/48+\varepsilon}),
\end{equation}
\tag{1.2}
$$
where $\Xi(n)$ represents the number of the representations of $n$ in the form
$$
\begin{equation*}
n_1^{2}+n_2^{2}+n_3^{3}+n_4^{3}+n_5^{3}+n_6^3
\end{equation*}
\notag
$$
and
$$
\begin{equation*}
\mathfrak{S}^*(n)=\sum_{q=1}^{\infty}\frac{1}{q^{6}}\sum_{\substack{a=1 \\ (a, q)=1}}^{q} \biggl(\sum_{r_{1}=1}^{q}e\biggl(\frac{ar_{1}^{2} }{q}\biggr)\biggr)^{2} \biggl(\sum_{r_{2}=1}^{q}e\biggl(\frac{ar_{2}^{3} }{q}\biggr)\biggr)^{4}e \biggl(-\frac{an}{q}\biggr).
\end{equation*}
\notag
$$
Motivated by the works of Vinogradov [6] and Hua [7], many scholars began to study the Waring-Goldbach problem by restricting the choice of natural numbers $n_1, \dots, n_s$ to primes $p_1, \dots, p_s$ and putting some local conditions on $n$. Then in view of Vaughan’s result it is reasonable to conjecture that every sufficiently large even integer $n$ can be represented as the sum of two squares and four cubes of primes, that is,
$$
\begin{equation}
n=p_1^{2}+p_2^{2}+p_3^{3}+p_4^{3}+p_5^{3}+p_6^3.
\end{equation}
\tag{1.3}
$$
It seems that this conjecture is out of reach now. But some approximations have been studied in this direction. Denote by $P_r$ an almost prime with at most $r$ prime factors, counted in accordance with multiplicities. Motivated by the works of Brüdern [8], [9], combining sieve methods and the Hardy-Littlewood method, Cai [10] proved that all sufficiently large even integers $n$ can be represented in the form
$$
\begin{equation*}
x_1^{2}+p_1^{2}+p_2^{3}+p_3^{3}+p_4^{3}+p_5^{3},
\end{equation*}
\notag
$$
with $x$ being a $P_3$. Set
$$
\begin{equation}
\begin{aligned} \, \mathscr{E}=\bigl\{n\in\mathbb{N}\colon 2\mid n, \, n\neq p_{1}^{2}+p_{2}^{2}+p_{3}^{3} +p_{4}^{3}+p_{5}^{3}+p_{6}^{3}\bigr\}. \end{aligned}
\end{equation}
\tag{1.4}
$$
Let $E(N)$ denote the cardinality of $\mathscr{E}\cap(0,N]$. Recently, Y. Liu [11] considered the set of possible exceptions to the representation (1.3) and proved that, for any ${\varepsilon>0}$,
$$
\begin{equation*}
E(N)\ll N^{1/4+\varepsilon}.
\end{equation*}
\notag
$$
In this paper, we improve further the above result of Y. Liu by establishing the following theorem. Theorem 1. Let $E(N)$ be defined as above. Then, for any $\varepsilon>0$,
$$
\begin{equation*}
E(N)\ll N^{1/12+\varepsilon}.
\end{equation*}
\notag
$$
In comparison, $1/4=0.25$ and $1/12=0.0833\dots$ . It is easy to find that Theorem 1 improves on Y. Liu’s result by a factor of $3$. It is also interesting to consider a variant problem by replacing one square of a prime in (1.3) by the cube of a prime, that is,
$$
\begin{equation*}
n=p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}.
\end{equation*}
\notag
$$
In 2014, Cai [12] proved that any sufficiently large even integer $n$ can be represented in the form
$$
\begin{equation*}
x_1^{2}+p_1^{3}+p_2^{3}+p_3^{3}+p_4^{3}+p_5^{3},
\end{equation*}
\notag
$$
with $x$ being a $P_{36}$. Subsequently, the almost prime $P_{36}$ was improved to $P_{6}$ by Li and Zhang [13]. Set
$$
\begin{equation}
\mathscr{E}_1=\bigl\{n\in\mathbb{N}\colon 2\mid n,\, n\neq p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}\bigr\}.
\end{equation}
\tag{1.5}
$$
Let $E_1(N)$ denote the cardinality of $\mathscr{E}_1\cap(0,N]$. Applying an argument analogous to the proof of Theorem 1 we can obtain the following theorem. Theorem 2. Let $E_{1}(N)$ be defined as above. Then, for any $\varepsilon>0$,
$$
\begin{equation*}
E_{1}(N)\ll N^{5/12+\varepsilon}.
\end{equation*}
\notag
$$
We establish Theorems 1 and 2 by applying the Hardy-Littlewood method. Our improvement benefits from the works of Kawada and Wooley [14] (see Lemmas 1–3 below) and Zhao [15] (see Lemma 9 in what follows). Unlike the treatment in [11], first we consider a Waring-Goldbach problem related to Theorems 1 and 2, but with fewer summands. We establish a result on an exceptional set for a related Waring-Goldbach problem with fewer summands. Then, with the help of arguments in [14] and [15], we obtain a better result. Due to the fact that the proof of Theorem 2 is similar to that of Theorem 1, we just sketch its proof in § 5. In § 2 we give the proof of Theorem 1. In §§ 3 and 4, we present several lemmas and the proof of Proposition 2, respectively. Notation. Throughout this paper, the letter $p$, with or without a subscript, always represents a prime number; $\varepsilon$ denotes a sufficiently small positive constant, which is not necessarily the same at each occurrence. We use $\chi \pmod q$ to denote a Dirichlet character modulo $q$ and $\chi^{0} \pmod q$ to denote the principal character; $f(x)\ll g(x)$ and $f(x)\asymp g(x)$ mean that $f(x)=O(g(x))$ and $f(x)\ll g(x)\ll f(x)$, respectively; $d(n)$ is the divisor function. The letter $c$, with or without subscripts or superscripts, always denotes a positive constant. As usual, we abbreviate $e^{2\pi ix}$ and $\log N$ to $e(x)$ and $L$, respectively.
§ 2. Preliminaries and outline of the method To explain Lemmas 1–3 we need to introduce further notation. Let $N$ be a sufficiently large natural number and $\mathbf{A}$ be a subset of $\mathbb{N}$. We take $\overline{\mathbf{A}}$ to be the complement $\mathbb{N}\setminus \mathbf{A}$ of $\mathbf{A}$ to $\mathbb{N}$. For a general interval $(a, b]$ we denote by $(\mathbf{A})_{a}^{b}$ the set $\mathbf{A}\cap(a, b]$ and by $|\mathbf{A}|_{a}^{b}$ the cardinality of $\mathbf{A}\cap(a,b]$. Let $|\overline{\mathbf{A}}|_{a}^{b}$ be the number of natural numbers in the interval $(a,b]$ that do not belong to $\mathbf{A}$. For $\mathbf{A},\mathbf{B}\subseteq\mathbb{N}$ we write
$$
\begin{equation*}
\mathbf{A}\pm\mathbf{B}=\bigl\{a\pm b\colon a\in\mathbf{A},\ b\in\mathbf{B}\bigr\}.
\end{equation*}
\notag
$$
When $k\in\mathbb{N}$, a subset $\mathbf{Q}$ of $\mathbb{N}$ is a high-density subset of the $k$th powers if (i) $\mathbf{Q}\subseteq\{n^{k},n\in\mathbb{N}\}$, (ii) $|\mathbf{Q}|_{0}^{N}>N^{1/k-\varepsilon}$. For $\theta>0$ a set $\mathbf{R}\subseteq\mathbb{N}$ is said to have the complementary density growth exponent smaller than $\theta$ if there exists a positive number $\delta$ such that $|\overline{\mathbf{R}}|<N^{\theta-\delta}$. When $q\in\mathbb{N}$ and $\mathbf{a}\in \{0,1,\dots,q-1\}$, let $\mathcal{P}_{\mathbf{a}}=\mathcal{P}_{\mathbf{a},q}$ denote
$$
\begin{equation*}
\mathcal{P}_{\mathbf{a},q}=\{\mathbf{a}+mq\colon m\in\mathbb{Z}\}.
\end{equation*}
\notag
$$
We call a set $\mathbf{L}$ a union of arithmetic progressions modulo $q$ if
$$
\begin{equation*}
\mathbf{L}=\bigcup_{\mathbf{l}\in\mathfrak{L}}P_{\mathbf{l},q}
\end{equation*}
\notag
$$
for some subset $\mathfrak{L}$ of $\{0,1,\dots,q-1\}$. Also let
$$
\begin{equation*}
\langle\mathbf{C}\wedge\mathbf{L}\rangle_{a}^{b} =\min_{\mathbf{l}\in\mathfrak{L}}|\mathbf{C}\cap P_{\mathbf{l},q}|_{a}^{b},
\end{equation*}
\notag
$$
where $\mathbf{C}\subseteq\mathbb{N}$ and $a,b\in\mathbb{Z}$. When $k\in\mathbb{N}$ and $\mathbf{L}$ is a union of arithmetic progressions modulo $q$, a subset $\mathbf{Q}$ of $\mathbb{N}$ is a high-density subset of the $k$th powers relative to $\mathbf{L}$ if (i) $\mathbf{Q}\subseteq\{n^{k},n\in\mathbb{N}\}$, (ii) $\langle \mathbf{Q} \wedge \mathbf{L} \rangle_{0}^{N} \gg_{q}N^{1/k-\varepsilon}$. For $\theta>0$ a set $\mathbf{R}\subseteq\mathbb{N}$ is said to have an $\mathbf{L}$-complementary density growth exponent smaller than $\theta$ if $|\overline{\mathbf{R}}\cap\mathbf{L}|_{0}^{N}<N^{\theta-\delta}$. Lemma 1 (see [14], Theorem 1.2). Let $\mathbf{S}$ be a high-density subset of the squares, and suppose that $\mathbf{A}\subseteq\mathbb{N}$ has a complementary density growth exponent smaller than $1$. Then, whenever $\varepsilon>0$ and the natural number $N$ is sufficiently large in terms of $\varepsilon$, one has
$$
\begin{equation*}
|\overline{\mathbf{A}+\mathbf{S}}|_{2N}^{3N} \ll N^{\varepsilon-1/2}|\overline{\mathbf{A}}|_{2N}^{3N}.
\end{equation*}
\notag
$$
Lemma 2 (see [14], Theorem 2.2). Let $\mathbf{L}, \mathbf{M}$ and $\mathbf{N}$ be unions of arithmetic progressions modulo $q$, for some natural number $q$, and suppose that $\mathbf{N}\subseteq\mathbf{L}+\mathbf{M}$. Suppose also that $\mathbf{S}$ is a high-density subset of the squares relative to $\mathbf{L}$ and $\mathbf{A}\subseteq\mathbb{N}$ has an $\mathbf{M}$-complementary density growth exponent smaller than $1$. Then, whenever $\varepsilon>0$ and the natural number $N$ is sufficiently large in terms of $\varepsilon$, one has
$$
\begin{equation*}
|\overline{\mathbf{A}+\mathbf{S}}\cap\mathbf{N}|_{2N}^{3N} \ll_{q}N^{\varepsilon-1/2}|\overline{\mathbf{A}}\cap\mathbf{M}|_{N}^{3N}.
\end{equation*}
\notag
$$
Lemma 3 (see [14], Theorem 1.3, (a)). Let $\mathbf{C}$ be a high-density subset of the cubes, and suppose that $\mathbf{A}\subseteq\mathbb{N}$ has a complementary density growth exponent smaller than $\theta$ for some positive number $\theta$. Then, whenever $\varepsilon>0$ and the natural number $N$ is sufficiently large in terms of $\varepsilon$, one has
$$
\begin{equation*}
|\overline{\mathbf{A}+\mathbf{C}}|_{2N}^{3N} \ll N^{\varepsilon-1/3}|\overline{\mathbf{A}}|_{2N}^{3N} +N^{\varepsilon-1}(|\overline{\mathbf{A}}|_{2N}^{3N})^{2}.
\end{equation*}
\notag
$$
In order to prove Theorem 1, first we apply the Hardy-Littlewood method to study the problem
$$
\begin{equation*}
N=p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}.
\end{equation*}
\notag
$$
Let $N$ be a sufficiently large positive integer, and let
$$
\begin{equation}
P=N^{3/20-2\varepsilon}\quad\text{and} \quad Q=N^{17/20+\varepsilon}.
\end{equation}
\tag{2.1}
$$
By Dirichlet’s lemma on rational approximation, each $\alpha\in[1/Q,1+1/Q]$ can be written in the form
$$
\begin{equation*}
\alpha=\frac{a}{q}+\lambda, \qquad |\lambda|\leqslant \frac{1}{qQ},
\end{equation*}
\notag
$$
for integers $a$ and $q$ such that $1\leqslant a\leqslant q\leqslant Q$ and $(a,q)=1$. Define
$$
\begin{equation}
\mathfrak{M}=\bigcup_{q\leqslant P}\bigcup_{\substack{1\leqslant a\leqslant q \\ (a,q)=1}}\mathfrak{M}(q,a) \quad\text{and}\quad \mathfrak{m} =\biggl[\frac{1}{Q},1+\frac{1}{Q}\biggr]\setminus\mathfrak{M},
\end{equation}
\tag{2.2}
$$
where
$$
\begin{equation*}
\mathfrak{M}(q,a)=\biggl[\frac{a}{q}-\frac{1}{qQ},\frac{a}{q}+\frac{1}{qQ}\biggr].
\end{equation*}
\notag
$$
For $k=2,3$ and $P_{k}=(N/16)^{1/k}$ we set
$$
\begin{equation}
f_{k}(\alpha)=\sum_{P_{k}<p\leqslant 2P_{k}}(\log p)e(p^{k}\alpha).
\end{equation}
\tag{2.3}
$$
Let
$$
\begin{equation*}
r(n)=\sum_{\substack{n=p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}\\ P_{2}<p_{1}\leqslant 2P_{2}\\ P_{3}<p_{2},p_{3},p_{4}\leqslant 2P_{3}}}\prod_{j=1}^{4}\log p_{j}.
\end{equation*}
\notag
$$
By orthogonality and (2.2), one has
$$
\begin{equation}
r(n)=\int_{0}^{1}f_{2}(\alpha)f_{3}^{3}(\alpha)e(-n\alpha)\,\mathrm{d}\alpha =\biggl\{\int_{\mathfrak{M}} +\int_{\mathfrak{m}}\biggr\}f_{2}(\alpha)f_{3}^{3}(\alpha)e(-n\alpha)\,\mathrm{d}\alpha.
\end{equation}
\tag{2.4}
$$
Set
$$
\begin{equation*}
C_{k}(\chi,a)=\sum_{h=1}^{q}\overline{\chi(h)}e\biggl(\frac{ah^{k}}{q}\biggr)\quad\text{and} \quad C_{k}(q,a)=C_{k}(\chi^{0},a),
\end{equation*}
\notag
$$
where $\chi\pmod q$ is a Dirichlet character and $k=2,3$. Let
$$
\begin{equation*}
B(n,q)=\sum_{\substack{1\leqslant a\leqslant q\\(a,q)=1}} C_{2}(q,a)C_{3}(q,a)C_{3}(q,a)C_{3}(q,a)e\biggl(-\frac{an}{q}\biggr)
\end{equation*}
\notag
$$
and
$$
\begin{equation}
A(n,q)=\frac{B(n,q)}{\varphi^{4}(q)}, \qquad \mathfrak{S}(n)=\sum_{q=1}^{\infty}A(n,q).
\end{equation}
\tag{2.5}
$$
Proposition 1. Let $P$, $Q$ and $\mathfrak{M}$ be defined in (2.1) and (2.2), respectively. Then for $n\in[N/4,N]$ and any $A>0$,
$$
\begin{equation}
\int_{\mathfrak{M}}f_{2}(\alpha)f_{3}^{3}(\alpha)e(-n\alpha)\,\mathrm{d}\alpha =\frac{1}{54}\mathfrak{S}(n)\mathfrak{J}(n)+O(N^{1/2}L^{-A}).
\end{equation}
\tag{2.6}
$$
Here $\mathfrak{S}(n)$ is the singular series defined in (2.5), which is absolutely convergent and satisfies
$$
\begin{equation}
(\log\log n)^{-c^{*}}\ll\mathfrak{S}(n)\ll d(n),
\end{equation}
\tag{2.7}
$$
where $n$ is an integer satisfying $n\equiv0\pmod2$ and $c^{*}$ is an absolute positive constant; $\mathfrak{J}(n)$ is defined by
$$
\begin{equation*}
\mathfrak{J}(n)=\sum_{\substack{m_{1}+m_{2}+m_{3}+m_{4}=n\\P_{2}^{2}<m_{1}\leqslant (2P_{2})^{2}\\ P_{3}^{2}<m_{2},m_{3},m_{4}\leqslant (2P_{3})^{2}}}m_{1}^{-1/2} (m_{2}m_{3}m_{4})^{-2/3}
\end{equation*}
\notag
$$
and satisfies
$$
\begin{equation}
\mathfrak{J}(n)\asymp N^{1/2}.
\end{equation}
\tag{2.8}
$$
The proof of Proposition 1 is a standard application of the iterative argument developed by Liu and Zhan (see [16], [17] and other papers). Thus we omit its proof here. We set
$$
\begin{equation*}
\begin{gathered} \, \mathscr{E}_{*}=\bigl\{n\in\mathbb{N}\colon n\equiv0\ (\operatorname{mod} 2),\ n\neq p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}\bigr\}, \\ \mathscr{E}_{**}=\bigl\{n\in\mathbb{N}\colon n\equiv1\ (\operatorname{mod} 2),\ n\neq p_{1}^{2}+p_{2}^{2}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}\bigr\} \end{gathered}
\end{equation*}
\notag
$$
and
$$
\begin{equation}
E_{*}(N)=|\mathscr{E}_{*}|_{0}^{N}, \qquad E_{**}(N)=|\mathscr{E}_{**}|_{0}^{N}.
\end{equation}
\tag{2.9}
$$
Proposition 2. Let $E_{*}(N)$ be defined in (2.9). Then
$$
\begin{equation*}
E_{*}(N)\ll N^{1-1/12+\varepsilon}.
\end{equation*}
\notag
$$
We prove this proposition in § 4. Proof of Theorem 1. Let the integers $N_{j}$ for $j>0$ be defined by the following recursive formula
$$
\begin{equation}
N_{0}=\biggl\lceil \frac{N}{2} \biggr\rceil, \qquad N_{j+1}=\biggl\lceil \frac{2N_{j}}{3} \biggr\rceil, \quad j\geqslant 0,
\end{equation}
\tag{2.10}
$$
where $\lceil N \rceil$ denotes the least integer not smaller than $N$. In addition, let $J$ be the least positive integer satisfying $N_{J}=2$; then $J=O(L)$.
We define
$$
\begin{equation*}
\begin{gathered} \, \mathbf{A}_{1}=\bigl\{p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}\bigr\}, \qquad \mathbf{S}_{1}=\{p^{2}\}, \qquad \mathbf{L}_{1}=\bigl\{n\in\mathbb{N}\colon n\equiv1\ (\operatorname{mod}{24})\bigr\}, \\ \mathbf{M}_{1}=\bigl\{n\in\mathbb{N}\colon n\equiv0\ (\operatorname{mod} 2)\bigr\} \quad\text{and}\quad \mathbf{N}_{1}=\bigl\{n\in\mathbb{N}\colon n\equiv1\ (\operatorname{mod} 2)\bigr\}. \end{gathered}
\end{equation*}
\notag
$$
It is easy to see that $\mathbf{L}_{1}$ is a union of arithmetic progressions modulo $24$, and $\mathbf{M}_{1}$ and $\mathbf{N}_{1}$ are unions of arithmetic progressions modulo $2$ which satisfy $\mathbf{N}_{1}\subseteq\mathbf{L}_{1}+\mathbf{M}_{1}$. Then, we deduce from the Prime Number Theorem for arithmetic progressions that
$$
\begin{equation*}
\langle\mathbf{S}_{1}\wedge\mathbf{L}_{1}\rangle_{0}^{N}\gg N^{1/2}L^{-1};
\end{equation*}
\notag
$$
hence $\mathbf{S}_{1}$ is a high-density subset of the squares relative to $\mathbf{L}_{1}$. Using Proposition 2 we obtain
$$
\begin{equation*}
|\overline{\mathbf{A}_{1}}\cap\mathbf{M}_{1}|_{0}^{N} =E_{*}(N)\ll N^{1-1/12+\varepsilon},
\end{equation*}
\notag
$$
hence $\mathbf{A}_{1}$ has $\mathbf{M}_{1}$-complementary density growth exponent smaller than $1$. By Lemma 2
$$
\begin{equation*}
|\mathscr{E}_{**}|_{2N}^{3N}\ll N^{\varepsilon-1/2}|\mathscr{E}_{*}|_{N}^{3N} \ll N^{\varepsilon-1/2}E_{*}(3N)\ll N^{1/2-1/12+\varepsilon}.
\end{equation*}
\notag
$$
It follows from (2.10) that
$$
\begin{equation}
E_{**}(N)\leqslant 3+\sum_{j=1}^{J}|\mathscr{E}_{**}|_{2N_{j}}^{3N_{j}} \ll N^{1/2-1/12+\varepsilon}.
\end{equation}
\tag{2.11}
$$
Similarly, let
$$
\begin{equation*}
\mathbf{A}_{2}=\bigl\{p_{1}^{2}+p_{2}^{2}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}\bigr\} \quad\text{and}\quad \mathbf{C}_{2} =\{p^{3}\}.
\end{equation*}
\notag
$$
Then we deduce from the Prime Number Theorem that
$$
\begin{equation*}
|\mathbf{C}_{2}|_{0}^{N}>N^{1/3-\varepsilon};
\end{equation*}
\notag
$$
hence $\mathbf{C}_{2}$ is a high-density subset of the cubes. By (2.11) we obtain
$$
\begin{equation*}
|\overline{\mathbf{A}_{2}}|_{0}^{N}\ll N^{1/2-1/12+\varepsilon},
\end{equation*}
\notag
$$
thus, $\mathbf{A}_{2}$ has a complementary density growth exponent smaller than $1/2$. By Lemma 3 and (1.4),
$$
\begin{equation*}
\begin{aligned} \, |\mathscr{E}|_{2N}^{3N}&\ll N^{\varepsilon-1/3}|\mathscr{E}_{**}|_{2N}^{3N} +N^{\varepsilon-1}(|\mathscr{E}_{**}|_{N}^{3N})^{2} \\ &\ll N^{\varepsilon-1/3}E_{**}(3N)+N^{\varepsilon-1}E_{**}^{2}(3N) \ll N^{1/6-1/12+\varepsilon}. \end{aligned}
\end{equation*}
\notag
$$
Consequently, we deduce from (2.10) that
$$
\begin{equation*}
E(N)\leqslant 3+\sum_{j=1}^{J}|\mathscr{E}|_{2N_{j}}^{3N_{j}}\ll N^{1/6-1/12 +\varepsilon},
\end{equation*}
\notag
$$
which implies Theorem 1.
§ 3. Some lemmas Lemma 4 (see [18], Theorem 1.1). Suppose that $\alpha$ is a real number and
$$
\begin{equation*}
\alpha=\frac{a}{q}+\lambda,
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
(a,q)=1, \qquad 1\leqslant a\leqslant Q \quad\textit{and}\quad |\lambda|\leqslant \frac{1}{qQ}.
\end{equation*}
\notag
$$
Then
$$
\begin{equation*}
f_{k}(\alpha) \ll d^{r_{k}}(q)\biggl(\sqrt{q(1+|\lambda| N) P_{k}} +P_{k}^{4/5}+\frac{P_{k}}{\sqrt{q(1+|\lambda| N)}}\biggr) L^{c},
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
r_{k}=\frac{1}{2}+\frac{\log k}{\log 2},
\end{equation*}
\notag
$$
and $c$ is an absolute positive constant. Lemma 5. Suppose that $\alpha$ is a real number and there exist integers $a\in\mathbb{Z}$ and $q\in\mathbb{N}$ such that
$$
\begin{equation*}
(a,q)=1, \qquad 1\leqslant q\leqslant N^{1/2}\quad\textit{and} \quad |q\alpha-a|\leqslant N^{-1/2}.
\end{equation*}
\notag
$$
Then
$$
\begin{equation}
f_{k}(\alpha) \ll P_{k}^{1-\eta_{k}+\varepsilon} +\frac{P_{k}^{1+\varepsilon}}{\sqrt{q(1+N|\alpha-a/q|)}}, \qquad k=2,3,
\end{equation}
\tag{3.1}
$$
where
$$
\begin{equation*}
\eta_{2}=\frac{1}{8}\quad\textit{and} \quad \eta_{3}=\frac{1}{12}.
\end{equation*}
\notag
$$
The proof of the upper bound for $f_{2}(\alpha)$ and $f_{3}(\alpha)$ can be found in Theorem 3 of Kumchev [19] and Lemma 2.3 of Zhao [20], respectively. We define
$$
\begin{equation*}
\mathfrak{N}(q,a)=\biggl[\frac{a}{q}-\frac{1}{qN^{5/6}},\,\frac{a}{q}+\frac{1}{qN^{5/6}}\biggr] \quad\text{and}\quad \mathfrak{N}=\bigcup_{q\leqslant N^{1/6}}\bigcup_{\substack{1\leqslant a\leqslant q\\ (a,q)=1}}\mathfrak{N}(q,a).
\end{equation*}
\notag
$$
If we write
$$
\begin{equation*}
\mathfrak{m}_{1}=\mathfrak{m}\cap\mathfrak{N} \quad\text{and}\quad \mathfrak{m}_{2}=\mathfrak{m}\setminus\mathfrak{N},
\end{equation*}
\notag
$$
then
$$
\begin{equation}
\mathfrak{m}=\mathfrak{m}_{1}\cup\mathfrak{m}_{2}.
\end{equation}
\tag{3.2}
$$
Lemma 6. Suppose $\alpha\in \mathfrak{m}_{1}$. Then
$$
\begin{equation*}
f_{3}(\alpha)\ll N^{4/15+\varepsilon}.
\end{equation*}
\notag
$$
Proof. If $\alpha\in \mathfrak{m}_{1}$, then
$$
\begin{equation*}
1 \leqslant a \leqslant q \leqslant N^{1/6}, \qquad |q \alpha-a| \leqslant N^{-5/6}\quad\text{and} \quad (a,q)=1.
\end{equation*}
\notag
$$
Since $\alpha\notin \mathfrak{M}$, we have either $q>P$ or $|q\alpha-a|>Q^{-1}$. We use Lemma 4 and obtain the upper bound for $f_{3}(\alpha)$. The lemma is proved. Lemma 7. Suppose $\alpha\in \mathfrak{m}_{2}$. Then
$$
\begin{equation*}
f_{2}(\alpha)\ll N^{1/2-1/16+\varepsilon} \quad\textit{and}\quad f_{3}(\alpha)\ll N^{1/3-1/36+\varepsilon}.
\end{equation*}
\notag
$$
Proof. One has
$$
\begin{equation*}
1 \leqslant a \leqslant q \leqslant N^{1/2}, \qquad|q \alpha-a| \leqslant N^{-1/2}\quad\text{and} \quad(a, q)=1.
\end{equation*}
\notag
$$
Since $\alpha\in\mathfrak{m}_{2}=\mathfrak{m}\setminus\mathfrak{N}$, we have either $q>N^{1/6}$ or $N|q\alpha-a|>N^{1/6}$. We use Lemma 5 and obtain the upper bounds for $f_{2}(\alpha)$ and $f_{3}(\alpha)$. The lemma is proved. Lemma 8. The inequality
$$
\begin{equation*}
\int_{0}^{1}|f_{2}^{2}(\alpha)f_{3}^{4}(\alpha)|\,\mathrm{d}\alpha\ll N^{4/3+\varepsilon}
\end{equation*}
\notag
$$
holds. We can deduce this from Hua’s lemma. We can also find this result in Lemma 2.6 of Zhao [21]. Lemma 9 (see [15], Lemma 3.1). For $k\geqslant 3$ let $\mathscr{M}$ be the union of intervals $\mathscr{M}(q,a)$ for
$$
\begin{equation*}
1\leqslant a\leqslant q\leqslant P^{k2^{1-k}}, \qquad (a,q)=1,
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\mathscr{M}(q,a)=\bigl\{\alpha\colon |q\alpha-a|\leqslant P^{k(2^{1-k}-1)}\bigr\}.
\end{equation*}
\notag
$$
For $u\geqslant 0$ let
$$
\begin{equation*}
\omega_{k}(p^{uk+v})= \begin{cases} kp^{-u-1/2}, & v=1, \\ p^{-u-1}, & 2\leqslant v\leqslant k, \end{cases}
\end{equation*}
\notag
$$
and
$$
\begin{equation*}
\mathscr{J}_{0}=\sup_{\beta\in[0,1)}\int_{\mathscr{M}} \frac{\omega_{k}^{2}(q)|h^{2}(\alpha+\beta)|}{(1+P^{k}|\alpha-a/q|)^{2}}\,\mathrm{d}\alpha.
\end{equation*}
\notag
$$
Suppose that $G(\alpha)$ and $h(\alpha)$ are integrable functions of period $1$. Let
$$
\begin{equation*}
g(\alpha)=g_{\mathcal{A}}(\alpha)=\sum_{x\in\mathcal{A}}e(x^{k}\alpha), \quad\textit{where } \mathcal{A}\subseteq(P,2P]\cap\mathbb{N},
\end{equation*}
\notag
$$
and let $\mathfrak{m}\subseteq[0,1)$ be a measurable set. Then
$$
\begin{equation*}
\int_{\mathfrak{m}}g(\alpha)G(\alpha)h(\alpha)\,\mathrm{d}\alpha\ll P\mathscr{J}_{0}^{1/4} \biggl(\int_{\mathfrak{m}}|G(\alpha)|^{2}\,\mathrm{d}\alpha\biggr)^{1/4} \mathscr{J}^{1/2}(m)+P^{1-2^{-k}+\varepsilon}\mathscr{J}(m),
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\mathscr{J}(m)=\int_{\mathfrak{m}}|G(\alpha)h(\alpha)|\,\mathrm{d}\alpha.
\end{equation*}
\notag
$$
Lemma 10. For $\gamma\in\mathbb{R}$ set
$$
\begin{equation*}
\mathcal{L}(\gamma)=\sum_{q\leqslant P_{3}}\sum_{\substack{1\leqslant a\leqslant q\\ (a,q)=1}} \int_{|\alpha-a/q|\leqslant P_{3}} \frac{\omega_{3}^{2}(q)d^{c}(q)|\sum_{P_{3}\leqslant p\leqslant 2P_{3}} e(p^{3}(\alpha+\gamma))|^{2}}{1+|\alpha-a/q|P_{3}^{3}}\, \mathrm{d}\alpha.
\end{equation*}
\notag
$$
Then
$$
\begin{equation*}
\mathcal{L}(\gamma)\ll P_{3}^{2}N^{-1+\varepsilon}
\end{equation*}
\notag
$$
uniformly for $\gamma\in\mathbb{R}$. Here $c$ is an absolute constant. We obtain this lemma by taking $k=3$ and $P=Q=P_{3}$ in Lemma 2.2 of Zhao [15].
§ 4. Proof of Proposition 2 In this section we give the proof of Proposition 2. Let
$$
\begin{equation*}
U(-\alpha)=\sum_{n\in(\mathscr{E}_{*})_{0}^{N}}e(-n\alpha).
\end{equation*}
\notag
$$
Noting that $r(n)=0$ for all $n\in(\mathscr{E}_{*})_{0}^{N}$, by (2.4) one has
$$
\begin{equation}
\begin{aligned} \, \notag 0&=\sum_{n\in(\mathscr{E}_{*})_{0}^{N}}r(n) =\sum_{n\in(\mathscr{E}_{*})_{0}^{N}}\int_{0}^{1}f_{2}(\alpha)f_{3}^{3}(\alpha) e(-n\alpha)\,\mathrm{d}\alpha \\ &=\biggl\{\int_{\mathfrak{M}}+\int_{\mathfrak{m}}\biggr\}f_{2}(\alpha)f_{3}^{3}(\alpha) U(-\alpha)\,\mathrm{d}\alpha. \end{aligned}
\end{equation}
\tag{4.1}
$$
We use Proposition 1 and obtain
$$
\begin{equation*}
\begin{aligned} \, &\int_{\mathfrak{M}}f_{2}(\alpha)f_{3}^{3}(\alpha)U(-\alpha)\,\mathrm{d}\alpha =\sum_{n\in(\mathscr{E}_{*})_{0}^{N}} \int_{\mathfrak{M}}f_{2}(\alpha)f_{3}^{3}(\alpha)e(-n\alpha)\,\mathrm{d}\alpha \\ &\qquad =\sum_{n\in(\mathscr{E}_{*})_{0}^{N}}\biggl\{\frac{1}{54}\mathfrak{S}(n)\mathfrak{J}(n) +O(N^{1/2}L^{-A})\biggr\} \gg E_{*}(N)N^{1/2-\varepsilon}. \end{aligned}
\end{equation*}
\notag
$$
This, in combination with (4.1), gives
$$
\begin{equation}
\biggl|\int_{\mathfrak{m}}f_{2}(\alpha)f_{3}^{3}(\alpha) U(-\alpha)\,\mathrm{d}\alpha\biggr|\gg E_{*}(N)N^{1/2-\varepsilon}.
\end{equation}
\tag{4.2}
$$
On the other hand, by Cauchy’s inequality
$$
\begin{equation}
\begin{aligned} \, \notag \biggl|\int_{\mathfrak{m}}f_{2}(\alpha)f_{3}^{3}(\alpha)U(-\alpha)\,\mathrm{d}\alpha\biggr| &\ll\biggl(\int_{\mathfrak{m}}|f_{2}^{2}(\alpha)f_{3}^{6}(\alpha)| \,\mathrm{d}\alpha\biggr)^{1/2} \biggl(\int_{\mathfrak{m}}|U(-\alpha)|^{2}\,\mathrm{d}\alpha\biggr)^{1/2} \\ &\ll \biggl(\int_{\mathfrak{m}}|f_{2}^{2}(\alpha)f_{3}^{6}(\alpha)| \,\mathrm{d}\alpha\biggr)^{1/2}E_{*}^{1/2}(N). \end{aligned}
\end{equation}
\tag{4.3}
$$
Let
$$
\begin{equation*}
\mathscr{J}(t)=\int_{\mathfrak{m}_{2}}|f_{2}^{2}(\alpha)f_{3}^{t}(\alpha)|\,\mathrm{d}\alpha, \qquad 1\leqslant t\leqslant 6.
\end{equation*}
\notag
$$
Taking
$$
\begin{equation*}
g(\alpha)=f_{3}(\alpha), \qquad h(\alpha)=f_{3}(-\alpha)\quad\text{and} \quad G(\alpha)=|f_{2}^{2}(\alpha)f_{3}^{4}(\alpha)|
\end{equation*}
\notag
$$
in Lemma 9 we obtain
$$
\begin{equation}
\begin{aligned} \, \notag \mathscr{J}(6) &=N^{1/3}\mathscr{J}_{0}^{1/4} \biggl(\int_{\mathfrak{m}_{2}}|f_{2}^{4}(\alpha)f_{3}^{8}(\alpha)|\, \mathrm{d}\alpha\biggr)^{1/4}\mathscr{J}^{1/2}(5) +N^{7/24+\varepsilon}\mathscr{J}(5) \\ &=:H_{1}+H_{2}, \end{aligned}
\end{equation}
\tag{4.4}
$$
where
$$
\begin{equation*}
\mathscr{J}_{0}=\sup_{\beta\in[0,1)}\sum_{q\leqslant P_{3}^{3/4}} \sum_{\substack{1\leqslant a\leqslant q\\ (a,q)=1}}\int_{\mathscr{M}(q,a)} \frac{\omega_{3}^{2}(q)|h^{2}(\alpha+\beta)|}{(1+P_{3}^{3}|\alpha-a/q|)^{2}}\,\mathrm{d}\alpha
\end{equation*}
\notag
$$
for
$$
\begin{equation*}
\mathscr{M}(q,a)=\bigl\{\alpha\colon |q\alpha-a|\leqslant P_{3}^{-9/4}\bigr\}.
\end{equation*}
\notag
$$
We use Lemma 10 and obtain
$$
\begin{equation}
\mathscr{J}_{0}\ll \mathcal{L}(\gamma)\ll P_{3}^{2}N^{-1+\varepsilon} \ll N^{-1/3+\varepsilon}.
\end{equation}
\tag{4.5}
$$
For $\mathscr{I}(5)$, by Cauchy’s inequality and Lemma 8 we have
$$
\begin{equation}
\mathscr{J}(5)\leqslant \mathscr{J}^{1/2}(6) \biggl(\int_{\mathfrak{m}_{2}}|f_{2}^{2}(\alpha)f_{3}^{4}(\alpha)| \,\mathrm{d}\alpha\biggr)^{1/2}\ll N^{2/3+\varepsilon}\mathscr{J}^{1/2}(6).
\end{equation}
\tag{4.6}
$$
For the integral in (4.4) we use Lemma 7 and obtain
$$
\begin{equation}
\int_{\mathfrak{m}_{2}}|f_{2}^{4}(\alpha)f_{3}^{8}(\alpha)|\,\mathrm{d}\alpha \ll \mathscr{J}(6)\sup_{\alpha\in\mathfrak{m}_{2}}f_{2}^{2}(\alpha)f_{3}^{2}(\alpha) \ll N^{107/72+\varepsilon}\mathscr{J}(6).
\end{equation}
\tag{4.7}
$$
We deduce from (4.5)–(4.7) that
$$
\begin{equation}
H_{1}\ll N^{275/288+\varepsilon}\mathscr{J}^{1/2}(6).
\end{equation}
\tag{4.8}
$$
It follows from (4.6) that
$$
\begin{equation}
H_{2}\ll N^{23/24+\varepsilon}\mathscr{J}^{1/2}(6).
\end{equation}
\tag{4.9}
$$
Substituting (4.8) and (4.9) into (4.4) one has
$$
\begin{equation*}
\mathscr{J}(6)\ll N^{{275}/{288}+\varepsilon}\mathscr{J}^{1/2}(6) +N^{{23}/{24}+\varepsilon}\mathscr{J}^{1/2}(6).
\end{equation*}
\notag
$$
Therefore,
$$
\begin{equation}
\mathscr{J}(6)\ll N^{{23}/{12}+\varepsilon}.
\end{equation}
\tag{4.10}
$$
Applying Lemmas 6 and 8 to estimate $\displaystyle \int_{\mathfrak{m}_{1}}|f_{2}^{2}(\alpha)f_{3}^{6}(\alpha)|\,\mathrm{d}\alpha$ we obtain
$$
\begin{equation}
\int_{\mathfrak{m}_{1}}|f_{2}^{2}(\alpha)f_{3}^{6}(\alpha)|\,\mathrm{d}\alpha \ll\sup_{\alpha\in\mathfrak{m}_{1}}|f_{3}^{2}(\alpha)| \int_{0}^{1}|f_{2}^{2}(\alpha)f_{3}^{4}(\alpha)|\,\mathrm{d}\alpha \ll N^{{28}/{15}+\varepsilon}.
\end{equation}
\tag{4.11}
$$
We deduce from (3.2), (4.10) and (4.11) that
$$
\begin{equation}
\int_{\mathfrak{m}}|f_{2}^{2}(\alpha)f_{3}^{6}(\alpha)|\,\mathrm{d}\alpha \ll N^{{23}/{12}+\varepsilon}.
\end{equation}
\tag{4.12}
$$
Substituting (4.2) and (4.12) into (4.3) we have
$$
\begin{equation*}
\begin{aligned} \, E_{*}(N)N^{1/2-\varepsilon}\ll (N^{{23}/{12} +\varepsilon})^{1/2}E_{*}^{1/2}(N), \end{aligned}
\end{equation*}
\notag
$$
which implies that
$$
\begin{equation*}
E_{*}(N)\ll N^{1-1/12+\varepsilon}.
\end{equation*}
\notag
$$
This completes the proof of Proposition 2.
§ 5. Sketch of the proof of Theorem 2 Similarly to the proof of Theorem 1, we also prove Theorem 2. First we consider the cubic Waring-Goldbach problem
$$
\begin{equation*}
n=p_{1}^{3}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}.
\end{equation*}
\notag
$$
Set
$$
\begin{equation*}
\begin{aligned} \, \mathscr{E}_{2} &=\bigl\{n\in\mathbb{N}\colon n\equiv 1\ (\operatorname{mod} 2),n\not\equiv 0, \pm2\ (\operatorname{mod} 9), n\not\equiv 0\ (\operatorname{mod} 7), \\ &\qquad n\neq p_{1}^{3}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}\bigr\}, \end{aligned}
\end{equation*}
\notag
$$
and let $E_{2}(N)$ denote the cardinality of $\mathscr{E}_{2}\cap(0,N]$. Zhao [15] proved that
$$
\begin{equation*}
E_{2}(N)\ll N^{1-1/12+\varepsilon}.
\end{equation*}
\notag
$$
Let
$$
\begin{equation*}
\mathbf{A}=\bigl\{p_{1}^{3}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}\bigr\}, \qquad \mathbf{S}=\{p^{2}\}.
\end{equation*}
\notag
$$
Similarly to the proof of Theorem 1 we obtain
$$
\begin{equation*}
|\overline{\mathbf{A}}|_{0}^{N}\ll N^{1-1/12+\varepsilon}.
\end{equation*}
\notag
$$
By Lemma 1,
$$
\begin{equation*}
|\mathscr{E}_1|_{2N}^{3N}\ll N^{1/2-1/12+\varepsilon},
\end{equation*}
\notag
$$
where $\mathscr{E}_1$ was defined in (1.5). It follows from (2.10) that
$$
\begin{equation*}
E_{1}(N)\ll \sum_{j=1}^{J}|\mathscr{E}|_{2N_{j}}^{3N_{j}} \ll N^{1/2-1/12+\varepsilon}.
\end{equation*}
\notag
$$
This completes the proof of Theorem 2. Acknowledgement The author would like to thank the referees for many useful comments made.
|
|
|
Bibliography
|
|
|
1. |
J. Brüdern, “On Waring's problem for two cubes and two small cubes”, Acta Arith., 155:3 (2012), 271–285 |
2. |
J. Brüdern, “On the asymptotic formula in Waring's problem: one square and three fifth powers”, Glasg. Math. J., 57:3 (2015), 681–692 |
3. |
R. C. Vaughan, The Hardy-Littlewood method, Cambridge Tracts in Math., 125, 2nd ed., Cambridge Univ. Press, Cambridge, 1997, xiv+232 pp. |
4. |
T. D. Wooley, “On Waring's problem for intermediate powers”, Acta Arith., 176:3 (2016), 241–247 |
5. |
R. C. Vaughan, On the representation of numbers as sums of squares, cubes and fourth powers and on the representation of numbers as sums of powers of primes, Ph.D. thesis, London Univ., London, 1969 |
6. |
I. Vinogradow, “Some theorems concerning the theory of primes”, Rec. Math. [Mat. Sbornik] N.S., 2(44):2 (1937), 179–195 |
7. |
Loo-Keng Hua, “Some results in additive prime-number theory”, Quart. J. Math. Oxford Ser. (2), 9:1 (1938), 68–80 |
8. |
J. Brüdern, Sieves, the circle method and Waring's problem for cubes, Mathematica Gottingenis, 51, Habilitationsschrift, Göttingen, 1991 |
9. |
J. Brüdern, “A sieve approach to the Waring-Goldbach problem. I. Sums of four cubes”, Ann. Sci. École Norm. Sup. (4), 28:4 (1995), 461–476 |
10. |
Yingchun Cai, “Waring-Goldbach problem: two squares and higher powers”, J. Théor. Nombres Bordeaux, 28:3 (2016), 791–810 |
11. |
Yuhui Liu, “On a Waring-Goldbach problem involving squares and cubes”, Math. Slovaca, 69:6 (2019), 1249–1262 |
12. |
Yingchun Cai, “The Waring-Goldbach problem: one square and five cubes”, Ramanujan J., 34:1 (2014), 57–72 |
13. |
Jinjiang Li and Min Zhang, “On the Waring-Goldbach problem for one square and five cubes”, Int. J. Number Theory, 14:9 (2018), 2425–2440 |
14. |
K. Kawada and T. D. Wooley, “Relations between exceptional sets for additive problems”, J. Lond. Math. Soc. (2), 82:2 (2010), 437–458 |
15. |
Lilu Zhao, “On the Waring-Goldbach problem for fourth and sixth powers”, Proc. Lond. Math. Soc. (3), 108:6 (2014), 1593–1622 |
16. |
Jianya Liu, “Enlarged major arcs in additive problems. II”, Proc. Steklov Inst. Math., 276 (2012), 176–192 |
17. |
Jianya Liu and Tao Zhan, “Sums of five almost equal prime squares. II”, Sci. China Ser. A, 41:7 (1998), 710–722 |
18. |
Xiumin Ren, “On exponential sums over primes and application in Waring-Goldbach problem”, Sci. China Ser. A, 48:6 (2005), 785–797 |
19. |
A. V. Kumchev, “On Weyl sums over primes and almost primes”, Michigan Math. J., 54:2 (2006), 243–268 |
20. |
Lilu Zhao, “The additive problem with one cube and three cubes of primes”, Michigan Math. J., 63:4 (2014), 763–779 |
21. |
Li Lu Zhao, “The exceptional set for sums of unlike powers of primes”, Acta Math. Sin. (Engl. Ser.), 30:11 (2014), 1897–1904 |
Citation:
X. Han, H. Liu, “Slim exceptional sets of Waring-Goldbach problems involving squares and cubes of primes”, Sb. Math., 214:5 (2023), 744–756
Linking options:
https://www.mathnet.ru/eng/sm9689https://doi.org/10.4213/sm9689e https://www.mathnet.ru/eng/sm/v214/i5/p140
|
Statistics & downloads: |
Abstract page: | 316 | Russian version PDF: | 29 | English version PDF: | 70 | Russian version HTML: | 117 | English version HTML: | 127 | References: | 62 | First page: | 2 |
|