Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2013, Volume 16, Number 2, Pages 98–108 (Mi sjim783)  

This article is cited in 9 scientific papers (total in 9 papers)

The Griffith formula for a Timoshenko-type plate with a curvilinear track

N. P. Lazarevab

a Institute for Mathematics of NEFU, 58 Belinskii st., 677000 Yakutsk, Republic of Sakha, Russia
b Lavrent'ev Institute of Hydrodynamics SB RAS, 15 Lavrent'ev av., 630090 Novosibirsk, Russia
Full-text PDF (270 kB) Citations (9)
References:
Abstract: We consider an equilibrium problem for an elastic transversely isotropic Timoshenko-type plate with a curvilinear crack. Nonpenetration conditions on the faces of the crack having the form of inequalities (conditions of the Signorini type) are given. It is proved that the solutions to the equilibrium problems with a perturbed crack converge to the solution to the equilibrium problem with the unperturbed crack in the corresponding space. The derivative of the energy functional with respect to the crack length is obtained.
Keywords: Timoshenko-type plate, crack, nonpenetration condition, Griffith criterion, variational inequality, derivative of the energy functional, nonsmooth domain.
Received: 19.01.2012
Bibliographic databases:
Document Type: Article
UDC: 539.375
Language: Russian
Citation: N. P. Lazarev, “The Griffith formula for a Timoshenko-type plate with a curvilinear track”, Sib. Zh. Ind. Mat., 16:2 (2013), 98–108
Citation in format AMSBIB
\Bibitem{Laz13}
\by N.~P.~Lazarev
\paper The Griffith formula for a~Timoshenko-type plate with a~curvilinear track
\jour Sib. Zh. Ind. Mat.
\yr 2013
\vol 16
\issue 2
\pages 98--108
\mathnet{http://mi.mathnet.ru/sjim783}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3203345}
Linking options:
  • https://www.mathnet.ru/eng/sjim783
  • https://www.mathnet.ru/eng/sjim/v16/i2/p98
  • This publication is cited in the following 9 articles:
    1. I. V. Fankina, “O ravnovesii dvusloinoi konstruktsii s verkhnim sloem, nakryvayuschim vershinu defekta”, Sib. elektron. matem. izv., 17 (2020), 141–160  mathnet  crossref
    2. N. V. Neustroeva, N. P. Lazarev, “The derivative of the energy functional in an equilibrium problem for a Timoshenko plate with a crack on the boundary of an elastic inclusion”, J. Appl. Industr. Math., 11:2 (2017), 252–262  mathnet  crossref  crossref  elib
    3. I. V. Frankina, “Optimal control of the rigid layer size of the construction”, J. Math. Sci., 237:4 (2019), 521–529  mathnet  crossref  crossref
    4. V. V. Scherbakov, O. I. Krivorotko, “Optimalnye formy treschin v vyazkouprugom tele”, Tr. IMM UrO RAN, 21, no. 1, 2015, 294–304  mathnet  mathscinet  elib
    5. N. P. Lazarev, N. V. Neustroeva, N. A. Nikolaeva, “Optimalnoe upravlenie uglom naklona treschiny v zadache o ravnovesii plastiny Timoshenko”, Sib. elektron. matem. izv., 12 (2015), 300–308  mathnet  crossref
    6. A. M. Khludnev, “Optimalnoe upravlenie vklyucheniyami v uprugom tele, peresekayuschimi vneshnyuyu granitsu”, Sib. zhurn. industr. matem., 18:4 (2015), 75–87  mathnet  crossref  mathscinet  elib
    7. Lazarev N.P., “Energy Functional Derivative With Respect To the Length of a Curvilinear Oblique Cut in the Equilibrium Problem For a Timoshenko Plate”, J. Appl. Mech. Tech. Phys., 56:6 (2015), 1038–1048  crossref  mathscinet  zmath  isi  elib  scopus
    8. Khludnev A.M., “Optimal Control of a Thin Rigid Inclusion Intersecting the Boundary of An Elastic Body”, Pmm-J. Appl. Math. Mech., 79:5 (2015), 493–499  crossref  isi
    9. V. V. Shcherbakov, “Existence of an optimal shape for thin rigid inclusions in the Kirchhoff–Love plate”, J. Appl. Industr. Math., 8:1 (2014), 97–105  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:576
    Full-text PDF :211
    References:86
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025