Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2023, Volume 26, Number 1, Pages 132–141
DOI: https://doi.org/10.33048/SIBJIM.2023.26.112
(Mi sjim1219)
 

This article is cited in 2 scientific papers (total in 2 papers)

Numerical simulations of a swirling flow in a francis draft tube

E. V. Palkina, M. Yu. Hrebtovba, R. I. Mullyadzhanovab, I. V. Litvinovba, S. V. Alexeenkoab

a Kutateladze Institute of Thermophysics SB RAS, pr. Akad. Lavrentyeva 1, Novosibirsk 630090, Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk 630090, Russia
References:
DOI: https://doi.org/10.33048/SIBJIM.2023.26.112
Abstract: We study the flow in a model Francis-99 draft tube for partial load conditions using Large-eddy simulations. The swirl is produced by the runner rotating with a constant angular velocity. Within the validation step we compare results of eddy-resolving simulations with our Particle image velocimetry (PIV) and pressure measurements for three flow cases with different incoming flow rates. The time-averaged velocity fields agree well in experiments and simulations. To study the dynamical features we analyze spectral characteristics of the flow featuring a strong coherent component. This vortical structure corresponds to the precessing vortex core (PVC) changing the shape and amplitude with the increase in the bulk velocity.
Keywords: hydroturbine, draft tube, swirling flows, hydrodynamics instability, self-oscillation, precessing vortex core, turbulence, simulation, large-eddy simulation.
Funding agency Grant number
Russian Foundation for Basic Research 20-58-12012
Russian Science Foundation 21-79-10080
Ministry of Science and Higher Education of the Russian Federation СП-829.2021.1
Numerical simulation was performed within the framework of a grant from the Russian Foundation for Basic Research, project no. 20-58-12012. Experimental studies were carried out under a grant from the Russian Science Foundation, project no. 21-79-10080. The development of the computational code was carried out within the framework of the scholarship of the President of the Russian Federation, grant no. SP-829.2021.1 and the state assignment for Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences.
Received: 18.08.2022
Revised: 18.08.2022
Accepted: 29.09.2022
English version:
Journal of Applied and Industrial Mathematics, 2023, Volume 17, Issue 1, Pages 156–162
DOI: https://doi.org/10.1134/S1990478923010179
Document Type: Article
UDC: 533.17:532.517.4:53.082.56:532.574.7
Language: Russian
Citation: E. V. Palkin, M. Yu. Hrebtov, R. I. Mullyadzhanov, I. V. Litvinov, S. V. Alexeenko, “Numerical simulations of a swirling flow in a francis draft tube”, Sib. Zh. Ind. Mat., 26:1 (2023), 132–141; J. Appl. Industr. Math., 17:1 (2023), 156–162
Citation in format AMSBIB
\Bibitem{PalHreMul23}
\by E.~V.~Palkin, M.~Yu.~Hrebtov, R.~I.~Mullyadzhanov, I.~V.~Litvinov, S.~V.~Alexeenko
\paper Numerical simulations of a swirling flow in a francis draft tube
\jour Sib. Zh. Ind. Mat.
\yr 2023
\vol 26
\issue 1
\pages 132--141
\mathnet{http://mi.mathnet.ru/sjim1219}
\transl
\jour J. Appl. Industr. Math.
\yr 2023
\vol 17
\issue 1
\pages 156--162
\crossref{https://doi.org/10.1134/S1990478923010179}
Linking options:
  • https://www.mathnet.ru/eng/sjim1219
  • https://www.mathnet.ru/eng/sjim/v26/i1/p132
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:196
    Full-text PDF :59
    References:53
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026