Processing math: 100%
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2021, Volume 24, Number 2, Pages 38–61
DOI: https://doi.org/10.33048/SIBJIM.2021.24.203
(Mi sjim1128)
 

This article is cited in 18 scientific papers (total in 18 papers)

The problem of finding the kernels in the system of integro-differential Maxwell's equations

D. K. Durdievab, K. K. Turdievb

a The Institute of Mathematics named after V.I. Romanovskiy at the Academy of Sciences of the Republic of Uzbekistan, ul. M. Ikbal 11, Bukhara 200117, Uzbekistan
b Bukhara State University, ul. M. Ikbal 11, Bukhara 200117, Uzbekistan
References:
Abstract: We pose the direct and inverse problem of finding the electromagnetic field and the diagonal memory matrix for the reduced canonical system of integro-differential Maxwell's equations. The problems are replaced by a closed system of Volterra-type integral equations of the second kind with respect to the Fourier transform in the variables x1 and x2 of the solution to the direct problem and the unknowns of the inverse problem. To this system, we then apply the method of contraction mapping in the space of continuous functions with a weighted norm. Thus, we prove the global existence and uniqueness theorems for solutions to the posed problems.
Keywords: hyperbolic system, system of Maxwell's equations, integral equation, contraction mapping principle.
Received: 13.01.2021
Revised: 11.02.2021
Accepted: 15.04.2021
English version:
Journal of Applied and Industrial Mathematics, 2021, Volume 15, Issue 2, Pages 190–211
DOI: https://doi.org/10.1134/S1990478921020022
Bibliographic databases:
Document Type: Article
UDC: 517.968.72
Language: Russian
Citation: D. K. Durdiev, K. K. Turdiev, “The problem of finding the kernels in the system of integro-differential Maxwell's equations”, Sib. Zh. Ind. Mat., 24:2 (2021), 38–61; J. Appl. Industr. Math., 15:2 (2021), 190–211
Citation in format AMSBIB
\Bibitem{DurTur21}
\by D.~K.~Durdiev, K.~K.~Turdiev
\paper The problem of finding the kernels in the system
of integro-differential Maxwell's equations
\jour Sib. Zh. Ind. Mat.
\yr 2021
\vol 24
\issue 2
\pages 38--61
\mathnet{http://mi.mathnet.ru/sjim1128}
\crossref{https://doi.org/10.33048/SIBJIM.2021.24.203}
\elib{https://elibrary.ru/item.asp?id=47508377}
\transl
\jour J. Appl. Industr. Math.
\yr 2021
\vol 15
\issue 2
\pages 190--211
\crossref{https://doi.org/10.1134/S1990478921020022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85116208076}
Linking options:
  • https://www.mathnet.ru/eng/sjim1128
  • https://www.mathnet.ru/eng/sjim/v24/i2/p38
  • This publication is cited in the following 18 articles:
    1. D. K. Durdiev, T. R. Suyarov, Kh. Kh. Turdiev, “Obratnaya koeffitsientnaya zadacha dlya drobnogo telegrafnogo uravneniya s sootvetstvuyuschei drobnoi proizvodnoi po vremeni”, Izv. vuzov. Matem., 2025, no. 2, 39–52  mathnet  crossref
    2. Zavqiddin Bozorov, Halim Turdiev, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040010  crossref
    3. Durdimurod Durdiev, Halim Turdiev, Asliddin Boltaev, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040015  crossref
    4. Askar Rahmonov, Durdimurod Durdiev, Dilshoda Akramova, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040012  crossref
    5. Durdimurod Durdiev, Javlon Nuriddinov, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040014  crossref
    6. Jonibek Jumaev, Zavqiddin Bozorov, Istam Shadmanov, Dilshod Atoev, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040004  crossref
    7. Durdimurod Durdiev, Javlon Nuriddinov, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040013  crossref
    8. D. K. Durdiev, H. H. Turdiev, “Determining of a Space Dependent Coefficient of Fractional Diffusion Equation with the Generalized Riemann–Liouville Time Derivative”, Lobachevskii J Math, 45:2 (2024), 648  crossref
    9. D. K. Durdiev, J.J. Jumaev, H. H. Turdiev, “INVERSE PROBLEM FOR DETERMINING TIME DEPENDENT COEFFICIENT AND SOURCE FUNCTIONS IN A TIME-FRACTIONAL DIFFUSION EQUATION”, J Math Sci, 2024  crossref
    10. H. H. Turdiev, “Solvability Cauchy Problem for Time-Space Fractional Diffusion-Wave Equation with Variable Coefficient”, Lobachevskii J Math, 45:10 (2024), 5281  crossref
    11. D. K. Durdiev, Kh. Kh. Turdiev, “Zadacha opredeleniya yader v sisteme integro-differentsialnykh uravnenii akustiki”, Dalnevost. matem. zhurn., 23:2 (2023), 190–210  mathnet  crossref
    12. D. K. Durdiev, A. A. Boltaev, A. A. Rakhmonov, “Zadacha opredeleniya yadra tipa svertki v uravnenii Mura–Gibsona–Tomsona tretego poryadka”, Izv. vuzov. Matem., 2023, no. 12, 3–16  mathnet  crossref
    13. Kh. Kh. Turdiev, “Obratnye koeffitsientnye zadachi dlya vremenno-drobnogo volnovogo uravneniya s obobschennoi proizvodnoi Rimana–Liuvillya po vremeni”, Izv. vuzov. Matem., 2023, no. 10, 46–59  mathnet  crossref
    14. D. K. Durdiev, Z. R. Bozorov, A. A. Boltayev, “Inverse problem for the system of viscoelasticity in anisotropic media with tetragonal form of elasticity modulus”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 33:4 (2023), 581–600  mathnet  crossref
    15. Durdimurod Durdiev, Halim Turdiev, “Inverse Coefficient Problem for Fractional Wave Equation with the Generalized Riemann–Liouville Time Derivative”, Indian J Pure Appl Math, 2023  crossref
    16. U. D. Durdiev, “Inverse Source Problem for the Equation of Forced Vibrations of a Beam”, Russ Math., 67:8 (2023), 7  crossref
    17. H. H. Turdiev, “Inverse Coefficient Problems for a Time-Fractional Wave Equation with the Generalized Riemann–Liouville Time Derivative”, Russ Math., 67:10 (2023), 14  crossref
    18. D. K. Durdiev, A. A. Boltaev, A. A. Rahmonov, “Convolution Kernel Determination Problem in the Third Order Moore–Gibson–Thompson Equation”, Russ Math., 67:12 (2023), 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:442
    Full-text PDF :150
    References:71
    First page:12
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025