Abstract:
We pose the direct and inverse problem of finding the electromagnetic field and the diagonal memory matrix for the reduced canonical system of integro-differential Maxwell's equations.
The problems are replaced by a closed system of Volterra-type integral equations of the second kind with respect to the Fourier transform in the variables x1 and x2 of the solution to the direct problem and the unknowns of the inverse problem.
To this system, we then apply the method of contraction mapping in the space of continuous functions with a weighted norm.
Thus, we prove the global existence and uniqueness theorems for solutions to the posed problems.
Keywords:
hyperbolic system, system of Maxwell's equations,
integral equation, contraction mapping principle.
Citation:
D. K. Durdiev, K. K. Turdiev, “The problem of finding the kernels in the system
of integro-differential Maxwell's equations”, Sib. Zh. Ind. Mat., 24:2 (2021), 38–61; J. Appl. Industr. Math., 15:2 (2021), 190–211
\Bibitem{DurTur21}
\by D.~K.~Durdiev, K.~K.~Turdiev
\paper The problem of finding the kernels in the system
of integro-differential Maxwell's equations
\jour Sib. Zh. Ind. Mat.
\yr 2021
\vol 24
\issue 2
\pages 38--61
\mathnet{http://mi.mathnet.ru/sjim1128}
\crossref{https://doi.org/10.33048/SIBJIM.2021.24.203}
\elib{https://elibrary.ru/item.asp?id=47508377}
\transl
\jour J. Appl. Industr. Math.
\yr 2021
\vol 15
\issue 2
\pages 190--211
\crossref{https://doi.org/10.1134/S1990478921020022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85116208076}
Linking options:
https://www.mathnet.ru/eng/sjim1128
https://www.mathnet.ru/eng/sjim/v24/i2/p38
This publication is cited in the following 18 articles:
D. K. Durdiev, T. R. Suyarov, Kh. Kh. Turdiev, “Obratnaya koeffitsientnaya zadacha dlya drobnogo telegrafnogo uravneniya s sootvetstvuyuschei drobnoi proizvodnoi po vremeni”, Izv. vuzov. Matem., 2025, no. 2, 39–52
Zavqiddin Bozorov, Halim Turdiev, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040010
Durdimurod Durdiev, Halim Turdiev, Asliddin Boltaev, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040015
Askar Rahmonov, Durdimurod Durdiev, Dilshoda Akramova, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040012
Durdimurod Durdiev, Javlon Nuriddinov, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040014
Jonibek Jumaev, Zavqiddin Bozorov, Istam Shadmanov, Dilshod Atoev, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040004
Durdimurod Durdiev, Javlon Nuriddinov, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040013
D. K. Durdiev, H. H. Turdiev, “Determining of a Space Dependent Coefficient of Fractional Diffusion Equation with the Generalized Riemann–Liouville Time Derivative”, Lobachevskii J Math, 45:2 (2024), 648
D. K. Durdiev, J.J. Jumaev, H. H. Turdiev, “INVERSE PROBLEM FOR DETERMINING TIME DEPENDENT COEFFICIENT AND SOURCE FUNCTIONS IN A TIME-FRACTIONAL DIFFUSION EQUATION”, J Math Sci, 2024
H. H. Turdiev, “Solvability Cauchy Problem for Time-Space Fractional Diffusion-Wave Equation with Variable Coefficient”, Lobachevskii J Math, 45:10 (2024), 5281
D. K. Durdiev, Kh. Kh. Turdiev, “Zadacha opredeleniya yader v sisteme integro-differentsialnykh uravnenii akustiki”, Dalnevost. matem. zhurn., 23:2 (2023), 190–210
D. K. Durdiev, A. A. Boltaev, A. A. Rakhmonov, “Zadacha opredeleniya yadra tipa svertki v uravnenii Mura–Gibsona–Tomsona tretego poryadka”, Izv. vuzov. Matem., 2023, no. 12, 3–16
D. K. Durdiev, Z. R. Bozorov, A. A. Boltayev, “Inverse problem for the system of viscoelasticity in anisotropic media with tetragonal form of elasticity modulus”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 33:4 (2023), 581–600
Durdimurod Durdiev, Halim Turdiev, “Inverse Coefficient Problem for Fractional Wave Equation with the Generalized Riemann–Liouville Time Derivative”, Indian J Pure Appl Math, 2023
U. D. Durdiev, “Inverse Source Problem for the Equation of Forced Vibrations of a Beam”, Russ Math., 67:8 (2023), 7
H. H. Turdiev, “Inverse Coefficient Problems for a Time-Fractional Wave Equation with the Generalized Riemann–Liouville Time Derivative”, Russ Math., 67:10 (2023), 14
D. K. Durdiev, A. A. Boltaev, A. A. Rahmonov, “Convolution Kernel Determination Problem in the Third Order Moore–Gibson–Thompson Equation”, Russ Math., 67:12 (2023), 1