Abstract:
Complete integration is carried out of the matrix Riccati equation arising in continuum mechanics in the two-dimensional case. The method of commutators is used to obtain some compatibility conditions.
Keywords:
a matrix Riccati equation, commutator of differential operators.
.
The authors were supported by the Programs of Basic Research nos. III.22.4.1 and
I.1.5 (project no. 0314-2019-0011) of the Siberian Branch of the Russian Academy of
Sciences.
Citation:
M. V. Neshchadim, A. P. Chupakhin, “Method of commutators for integration of a matrix Riccati equation”, Sib. Zh. Ind. Mat., 24:1 (2021), 78–88; J. Appl. Industr. Math., 15:1 (2021), 78–86
\Bibitem{NesChu21}
\by M.~V.~Neshchadim, A.~P.~Chupakhin
\paper Method of commutators for integration of a matrix Riccati equation
\jour Sib. Zh. Ind. Mat.
\yr 2021
\vol 24
\issue 1
\pages 78--88
\mathnet{http://mi.mathnet.ru/sjim1121}
\crossref{https://doi.org/10.33048/SIBJIM.2021.24.106}
\elib{https://elibrary.ru/item.asp?id=46092044}
\transl
\jour J. Appl. Industr. Math.
\yr 2021
\vol 15
\issue 1
\pages 78--86
\crossref{https://doi.org/10.1134/S1990478921010075}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104807907}
Linking options:
https://www.mathnet.ru/eng/sjim1121
https://www.mathnet.ru/eng/sjim/v24/i1/p78
This publication is cited in the following 4 articles:
Yu. E. Anikonov, M. V. Neschadim, A. P. Chupakhin, “Mnogomernoe uravnenie Khopfa i nekotorye ego tochnye resheniya”, Sib. zhurn. industr. matem., 25:1 (2022), 5–13
S. A. Vasyutkin, A. P. Chupakhin, “Postroenie minimalnogo bazisa invariantov dlya differentsialnoi algebry (2×2)-matrits”, Sib. zhurn. industr. matem., 25:2 (2022), 21–31
Yu. E. Anikonov, M. V. Neshchadim, A. P. Chupakhin, “Multidimensional Hopf Equation and Some of Its Exact Solutions”, J. Appl. Ind. Math., 16:1 (2022), 1
S. A. Vasyutkin, A. P. Chupakhin, “Constructing a Minimal Basis of Invariants for Differential Algebra of 2×2 Matrices”, J. Appl. Ind. Math., 16:2 (2022), 356