Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2024, Volume 21, Issue 2, Pages 540–554
DOI: https://doi.org/doi.org/10.33048/semi.2024.21.039
(Mi semr1702)
 

Mathematical logic, algebra and number theory

On $3$-generated $6$-transposition groups

V. A. Afanasev, A. S. Mamontov

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
Abstract: We study $6$-transposition groups, i.e. groups generated by a normal set of involutions $D$, such that the order of the product of any two elements from $D$ does not exceed $6$. We classify most of the groups generated by $3$ elements from $D$, two of which commute, and prove they are finite.
Keywords: $6$-transposition group.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-281
The work is supported by the Mathematical Center in Akademgorodok under the agreement No. 075-15-2022-281 with the Ministry of Science and Higher Education of the Russian Federation.
Received April 1, 2024, published August 23, 2024
Document Type: Article
UDC: 512.54
MSC: 20F05
Language: English
Citation: V. A. Afanasev, A. S. Mamontov, “On $3$-generated $6$-transposition groups”, Sib. Èlektron. Mat. Izv., 21:2 (2024), 540–554
Citation in format AMSBIB
\Bibitem{AfaMam24}
\by V.~A.~Afanasev, A.~S.~Mamontov
\paper On $3$-generated $6$-transposition groups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2024
\vol 21
\issue 2
\pages 540--554
\mathnet{http://mi.mathnet.ru/semr1702}
\crossref{https://doi.org/doi.org/10.33048/semi.2024.21.039}
Linking options:
  • https://www.mathnet.ru/eng/semr1702
  • https://www.mathnet.ru/eng/semr/v21/i2/p540
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024