Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2024, Volume 21, Issue 1, Pages 81–97
DOI: https://doi.org/doi.org/10.33048/semi.2024.21.007
(Mi semr1670)
 

Mathematical logic, algebra and number theory

On connection between Rota—Baxter operators and solutions of the classical Yang—Baxter equation with an ad-invariant symmetric part on general linear algebra

M. E. Goncharov

Sobolev Institute of Mathematics, Academician Koptyug avenue, 4, 630090, Novosibirsk, Russia
Abstract: In the paper, we find the connection between solutions of the classical Yang—Baxter equation with an ad-invariant symmetric part and Rota—Baxter operators of special type on a real general linear algebra $gl_n(\mathbb R)$. Using this connection, we classify solutions of the classical Yang—Baxter equation with an ad-invariant symmetric part on $gl_2(\mathbb C)$ using the classification of Rota—Baxter operators of nonzero weight on $gl_2(\mathbb C)$ and a classification of Rota—Baxter operators of weight 0 on $sl_2(\mathbb C)$.
Keywords: Lie bialgebra, Rota—Baxter operator, classical Yang—Baxter equation, general linear Lie algebra.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0002
The research was carried out within the framework of the Sobolev Institute of Mathematics state contract (project FWNF-2022-0002).
Received August 14, 2023, published February 14, 2024
Document Type: Article
UDC: 512.554
MSC: 17B38
Language: English
Citation: M. E. Goncharov, “On connection between Rota—Baxter operators and solutions of the classical Yang—Baxter equation with an ad-invariant symmetric part on general linear algebra”, Sib. Èlektron. Mat. Izv., 21:1 (2024), 81–97
Citation in format AMSBIB
\Bibitem{Gon24}
\by M.~E.~Goncharov
\paper On connection between Rota---Baxter operators and solutions of the classical Yang---Baxter equation with an ad-invariant symmetric part on general linear algebra
\jour Sib. \`Elektron. Mat. Izv.
\yr 2024
\vol 21
\issue 1
\pages 81--97
\mathnet{http://mi.mathnet.ru/semr1670}
\crossref{https://doi.org/doi.org/10.33048/semi.2024.21.007}
Linking options:
  • https://www.mathnet.ru/eng/semr1670
  • https://www.mathnet.ru/eng/semr/v21/i1/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024