Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2024, Volume 21, Issue 1, Pages 1–16
DOI: https://doi.org/doi.org/10.33048/semi.2024.21.001
(Mi semr1664)
 

Probability theory and mathematical statistics

Local lower large deviations of strongly supercritical BPREG

K. Yu. Denisov

Steklov Mathematical Institute of RAS, Gubkin St., 8, 119991, Moscow, Russia
Abstract: We consider local probabilities of lower deviations for branching process $Z_{n} = X_{n, 1} + \dotsb + X_{n, Z_{n-1}}$ in random environment $\boldsymbol\eta$. We assume that $\boldsymbol\eta$ is a sequence of independent identically distributed variables and for fixed $\boldsymbol\eta$ the distribution of variables $X_{i,j}$ is geometric. We suppose that the associated random walk $S_n = \xi_1 + \dotsb + \xi_n$ has positive mean $\mu$ and satisfies left-hand Cramer's condition ${\mathbf E}\exp(h\xi_i) < \infty$ as $h^{-}<h<0$ for some $h^{-} < -1$. Under these assumptions, we find the asymptotic representation for local probabilities ${\mathbf P}\left( Z_n = \lfloor\exp\left(\theta n\right)\rfloor \right)$, where $\theta$ is near the boundary of the first and the second deviations zones.
Keywords: branching processes, random environment, random walk, Cramer's condition, large deviations, local theorems.
Funding agency Grant number
Russian Science Foundation 19-11-00111-П
Received July 8, 2023, published January 29, 2024
Document Type: Article
UDC: 519.218.27
MSC: 60J80
Language: Russian
Citation: K. Yu. Denisov, “Local lower large deviations of strongly supercritical BPREG”, Sib. Èlektron. Mat. Izv., 21:1 (2024), 1–16
Citation in format AMSBIB
\Bibitem{Den24}
\by K.~Yu.~Denisov
\paper Local lower large deviations of strongly supercritical BPREG
\jour Sib. \`Elektron. Mat. Izv.
\yr 2024
\vol 21
\issue 1
\pages 1--16
\mathnet{http://mi.mathnet.ru/semr1664}
\crossref{https://doi.org/doi.org/10.33048/semi.2024.21.001}
Linking options:
  • https://www.mathnet.ru/eng/semr1664
  • https://www.mathnet.ru/eng/semr/v21/i1/p1
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024