Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 1125–1149
DOI: https://doi.org/doi.org/10.33048/semi.2023.20.070
(Mi semr1633)
 

Discrete mathematics and mathematical cybernetics

$L_{\infty}$ norm minimization for nowhere-zero integer eigenvectors of the block graphs of Steiner triple systems and Johnson graphs

E. A. Bespalov, I. Yu. Mogilnykh, K. V. Vorob'ev

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
References:
Abstract: We study nowhere-zero integer eigenvectors of the block graphs of Steiner triple systems and the Johnson graphs. For the first eigenvalue we obtain the minimums of the $L_{\infty}$ norm for several infinite series of Johnson graphs, including $J(n,3)$ for all $n\geq 63$, as well as general upper and lower bounds. The minimization of the $L_{\infty}$ norm for nowhere-zero integer eigenvectors with the second eigenvalue of the block graph of a Steiner triple system $S$ is equivalent to finding the minimum nowhere-zero flow for Steiner triple system $S$. For the all Assmuss-Mattson Steiner triple systems of the orders greater or equal to $99$ we prove that the minimum flow is bounded above by $5$.
Keywords: Steiner triple system, flow, strongly regular graph, Johnson graph, Grassmann graph, eigenvalue.
Funding agency Grant number
Russian Science Foundation 22-21-00135
This work was funded by the Russian Science Foundation under grant 22-21-00135, https://rscf.ru/project/22-21-00135/.
Received April 3, 2023, published November 21, 2023
Document Type: Article
UDC: 519.725
MSC: 05E30
Language: English
Citation: E. A. Bespalov, I. Yu. Mogilnykh, K. V. Vorob'ev, “$L_{\infty}$ norm minimization for nowhere-zero integer eigenvectors of the block graphs of Steiner triple systems and Johnson graphs”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1125–1149
Citation in format AMSBIB
\Bibitem{BesMogVor23}
\by E.~A.~Bespalov, I.~Yu.~Mogilnykh, K.~V.~Vorob'ev
\paper $L_{\infty}$ norm minimization for nowhere-zero integer eigenvectors of the block graphs of Steiner triple systems and Johnson graphs
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 1125--1149
\mathnet{http://mi.mathnet.ru/semr1633}
\crossref{https://doi.org/doi.org/10.33048/semi.2023.20.070}
Linking options:
  • https://www.mathnet.ru/eng/semr1633
  • https://www.mathnet.ru/eng/semr/v20/i2/p1125
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:52
    Full-text PDF :10
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024