Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 1, Pages 86–99
DOI: https://doi.org/10.33048/semi.2023.20.008
(Mi semr1572)
 

Probability theory and mathematical statistics

On first-passage times for symmetric random walks without Lindeberg condition

A. I. Sakhanenko

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
References:
Abstract: We consider exit times for random walks with independent but not necessarily identically distributed increments. We are going to describe an asymptotic behavior of the probability that the random walk stays above the moving boundary for a long time. In the paper by D. Denisov, A. Sakhanenko, and V. Wachtel (Ann. Probab., 2018) an universal asymptotic formula for such probability was found in the case when the random walk satisfies the classical Lindeberg condition. Now we investigate a question if it is possible to find similar asymptotics for more general random walks when increments may have infinite variances, but the central limit theorem is still valid. We obtain such result for a class of walks with symmetrically distributed increments.
Keywords: random walk, symmetric distribution, exit time, central limit theorem, moving boundary.
Received November 22, 2022, published February 12, 2023
Document Type: Article
UDC: 519.214
MSC: 60G50;60G40
Language: Russian
Citation: A. I. Sakhanenko, “On first-passage times for symmetric random walks without Lindeberg condition”, Sib. Èlektron. Mat. Izv., 20:1 (2023), 86–99
Citation in format AMSBIB
\Bibitem{Sak23}
\by A.~I.~Sakhanenko
\paper On first-passage times for symmetric random walks without Lindeberg condition
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 1
\pages 86--99
\mathnet{http://mi.mathnet.ru/semr1572}
\crossref{https://doi.org/10.33048/semi.2023.20.008}
Linking options:
  • https://www.mathnet.ru/eng/semr1572
  • https://www.mathnet.ru/eng/semr/v20/i1/p86
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:65
    Full-text PDF :20
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024