Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2025, Volume 80, Issue 1, Pages 137–139
DOI: https://doi.org/10.4213/rm10225e
(Mi rm10225)
 

Brief communications

Boundedness of toroidal multilinear pseudodifferential operators with symbols in Hörmander classes

D. B. Bazarkhanov

Institute of Mathematics and Math Modeling, the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan, Almaty, Kazakhstan
References:
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP14869246
This work was supported by the Ministry of Science and Higher Education of the Republic of Kazakhstan under grant no. AP14869246.

Presented: A. A. Shkalikov
Accepted: 25.10.2024
Published: 12.05.2025
Bibliographic databases:
Document Type: Article
MSC: Primary 58J40; Secondary 42B15, 42B20
Language: English
Original paper language: Russian

Let $n\in \mathbb{N}$, $n\geqslant2$, and $\mathbb{N}_0=\mathbb{N} \cup \{0\}$. For $x=(x_1,\dots,x_n)$ and $y=(y_1,\dots,y_n) \in \mathbb{R}^n$ we put $xy=x_1y_1+\cdots+x_ny_n$. In what follows $\mathcal{S}:=\mathcal{S}(\mathbb{R}^n)$ and $\mathcal{S}':=\mathcal{S}'(\mathbb{R}^n)$ are the Schwartz spaces of test functions and tempered distributions, respectively, $\widetilde{\mathcal{S}}':=\mathcal{S}(\mathbb{T}^n)$ is the space of all distributions $f\in\mathcal{S}'$ that are $1$-periodic in each variable (that is, such that $\langle f,\varphi(\cdot+\xi)\rangle=\langle f,\varphi\rangle$ for all $\varphi\in\mathcal{S}$ and $\xi\in\mathbb{Z}^m$), $\widetilde{\mathcal{S}}:=\mathcal{S}(\mathbb{T}^m)$ is the space of all infinitely differentiable functions on $\mathbb{T}^m$, $\widehat{\varphi}$ is the Fourier transform of $\varphi\in \mathcal{S}$, and $\widehat{u}$ is the Fourier coefficient of $u\in \widetilde{\mathcal{S}}$:

$$ \begin{equation*} \widehat{\varphi}(\xi)= \int_{\mathbb{R}^n}\varphi(x)e^{-2\pi i\,\xi x}\,dx, \quad \xi\in\mathbb{R}^n, \qquad \widehat{u}(\xi)=\int_{\mathbb{T}^n} u(x) e^{-2\pi i\,\xi x}\,dx,\quad \xi\in\mathbb{Z}^n. \end{equation*} \notag $$
We consider a multilinear pseudodifferential operator of the form
$$ \begin{equation} T_a(u_1,\dots,u_N; x):=\int_{\Xi\in\mathbb{R}^{nN}} a(x,\xi^1,\dots,\xi^N) \prod_{\nu=1}^N\widehat{u}_\nu(\xi^\nu)e^{2\pi i \xi^\nu x}\,d\xi^\nu \end{equation} \tag{1} $$
($x\in \mathbb{R}^n$, $\Xi=(\xi^1,\dots,\xi^N)$, $\xi^\nu\in\mathbb{R}^n$, and $u_\nu \in \mathcal{S}$, $\nu=1,\dots,N$) and its toroidal analogue
$$ \begin{equation} \widetilde{T}_a(u_1,\dots,u_N;x):=\sum_{\Xi\in\mathbb{Z}^{nN}} a(x,\xi^1,\dots,\xi^N)\prod_{\nu=1}^N\widehat{u}_\nu(\xi^\nu) e^{2\pi i \xi^\nu x} \end{equation} \tag{2} $$
($x\in \mathbb{T}^n,\, \Xi=(\xi^1, \dots, \xi^N),\, \xi^\nu\in\mathbb{Z}^n$ and $u_\nu \in \widetilde{\mathcal{S}},\, \nu=1, \dots, N$).

Operators (1) were introduced by Meyer and Coifman in the mid-1970s and play an important role in harmonic analysis and its applications (see [1]–[3]).

Let $X_1(\mathbb{I}^n),\dots,X_N(\mathbb{I}^n)$, and $Y(\mathbb{I}^n)$ (where $\mathbb{I} \in \{\mathbb{R},\mathbb{T}\}$) be function spaces on $\mathbb{I}^n$, with (quasi)norms $\|\cdot|\, X_1(\mathbb{I}^n)\|,\dots, \|\cdot|\, X_N(\mathbb{I}^n)\|$, and $\|\cdot\,|Y(\mathbb{I}^n)\|$, respectively. Assume that $\mathcal{S}(\mathbb{I}^n)\subset X_\nu(\mathbb{I}^n)$, $\nu=1,\dots,N$. Let $R_a:=T_a$ for $\mathbb{I}=\mathbb{R}$ and $R_a:=\widetilde{T}_a$ for $\mathbb{I}=\mathbb{T}$. If there is a positive constant $C$ such that the inequality $\|R_a(u_1,\dots,u_n) \mid Y(\mathbb{I}^n)\| \leqslant C\prod_{\nu=1}^N\|u_\nu \mid X_\nu(\mathbb{I}^n)|$ is valid for all $(u_1,\dots,u_N)\in \mathcal{S}(\mathbb{I}^n)^N$, then we say that the operator $R_a$ is bounded from $X_1(\mathbb{I}^n)\times \cdots \times X_N(\mathbb{I}^n)$ to $Y(\mathbb{I}^n)$ and write $R_a\colon X_1(\mathbb{I}^n)\times\cdots\times X_N(\mathbb{I}^n)\to Y(\mathbb{I}^n)$.

The boundedness of operators (1) has intensively been studied for various symbols and functions spaces; see, for instance, [1]–[6] and the references there.

The Hörmander class $S_{\rho\delta}^m(\mathbb{R}^n;N)$ ($m\in\mathbb{R}$, $0\leqslant\delta, \rho\leqslant 1$) consists of all symbols $a\in C^\infty(\mathbb{R}^{n(N+1)})$ for which the following condition is satisfied: for all $\alpha,\beta^1,\dots,\beta^N \in \mathbb{N}_0^n$ there exists $C=C(\alpha,\beta^1,\dots,\beta^N)>0$ such that the differential inequality

$$ \begin{equation*} |\partial^\alpha_x \partial^{\beta^1}_{\xi^1}\cdots \partial^{\beta^N}_{\xi^N}a(x,\xi^1,\dots,\xi^N)|\leqslant C\langle \Xi\rangle^{m+\delta|\alpha|-\rho(|\beta^1|+\cdots+ |\beta^N|)}\quad (x\in\mathbb{R}^n, \ \ \Xi\in\mathbb{R}^{nN}), \end{equation*} \notag $$
holds true. Here $\langle \Xi \rangle=(1+\sum_{\nu=1}^N\xi^\nu\xi^\nu)^{1/2}$.

The Hörmander class $S_{\rho\delta}^m(\mathbb{T}^n; N)$ ($m\in\mathbb{R}$, $0\leqslant\delta, \rho\leqslant 1$) of toroidal symbols $a \colon \mathbb{R}^{n}\times\mathbb{Z}^{nN}\to\mathbb{C}$ ($a(\,\cdot\,,\Xi) \in C^\infty(\mathbb{T}^{n})$ for each $\Xi\in\mathbb{Z}^{nN}$) is defined analogously — with $\Delta^{\beta^\nu}_{\xi^\nu}$ (a finite difference of order $\beta^\nu$ with step $1$) and $\mathbb{Z}^{nN}$ in place of $\partial^{\beta^\nu}_{\xi^\nu}$ and $\mathbb{R}^{nN}$.

We fix $\phi\in \mathcal{S}$ such that $\displaystyle\int_{\mathbb{R}^n} \phi=1$. Put $\phi_t(x):=t^{-n}\phi(x/t)$.

Below $\widetilde{X}_p:=\widetilde{H}_p$ for $0< p\leqslant 1$, $\widetilde{X}_p:=\widetilde{L}_p$ for $1< p\leqslant\infty$, $\widetilde{Y}_r:=\widetilde{L}_r$ for $0< r< \infty$, and $\widetilde{Y}_\infty:=\widetilde{\operatorname{BMO}}$. Here $\widetilde{L}_p:=L_p(\mathbb{T}^n)$ ($0< p\leqslant\infty$) is the Lebesgue space endowed with the standard (quasi)norm $\|\cdot |\, \widetilde{L}_p\|$, $\widetilde{\operatorname{BMO}}:=\operatorname{BMO}(\mathbb{T}^n)$ is the space of functions of bounded mean oscillation on $\mathbb{R}^n$ which are 1-periodic in each variable, and

$$ \begin{equation*} \widetilde{H}_p:=H_p(\mathbb{T}^n):=\Bigl\{f\in\mathcal{S}'(\mathbb{T}^n)\bigm|\|f\,|\,\widetilde{H}_p\| :=\Bigl\|\,\sup_{t>0} |\widetilde{\phi}_t\ast f|\Bigm|\widetilde{L}_p\Bigr\|<\infty\Bigr\} \end{equation*} \notag $$
is the (real) Hardy space, $0< p\leqslant1$ (the periodization $\widetilde{g}\colon \mathbb{T}^m \to \mathbb{C}$ of the function $g\colon \mathbb{R}^m \to \mathbb{C}$ is defined as the (formal) sum of the series $\sum_{\xi\in \mathbb{Z}^m}g(x+\xi)$).

For $0 \leqslant \rho < 1$ and $0 < p,q,r \leqslant \infty$ such that $1/p+1/q=1/r$, we defined the quantities $m_\rho(p,q)=(1-\rho)m_0(p, q)$ and $m_0(p,q)=-n\max\{1/2,1/p,1/q,1- 1/r,1/r-1/2\}$.

Theorem 1. Let $0\leqslant\rho<1$, and let $0< p, q, r\leqslant\infty$ satisfy $1/p+1/q=1/r$. Then $\sup\{ m\in \mathbb{R} \mid \widetilde{T}_a \colon \widetilde{X}_p \times \widetilde{X}_q \to \widetilde{Y}_r$ for all $a\in S^m_{\rho\rho}(\mathbb{T}^n; 2)\}=m_\rho(p,q)$.

Moreover, $\widetilde{T}_a\colon \widetilde{X}_p \times \widetilde{X}_q \to \widetilde{Y}_r$ for each $a\in S^{m_0(p,q)}_{0 0}(\mathbb{R}^n;2)$. If, in addition, $0\leqslant\rho<1$ and $\min\{p,q,r\}\geqslant1$, then $\widetilde{T}_a\colon \widetilde{X}_p \times \widetilde{X}_q \to \widetilde{Y}_r$ for any $a\in S^{m_\rho(p,q)}_{\rho\rho}(\mathbb{T}^n;2)$.

Theorem 2. Let $N\geqslant2$, $0< r,p_1,\dots,p_N\leqslant\infty$, $1/r \leqslant 1/p_1+\cdots+1/p_N$, and $m\in\mathbb{R}$. Then $\widetilde{T}_a \colon \widetilde{X}_{p_1}\times \cdots \times \widetilde{X}_{p_N} \to \widetilde{Y}_r$ for all $a\in S^m_{0 0}(\mathbb{T}^n;N)$ if and only if $m\leqslant n\bigl(\min\{1/p,1/2\}-\sum_{\nu=1}^N\max\{1/p_\nu,1/2\}\bigr)$.

Remark. Theorems 1 and 2 are natural analogues of an important result of Miyachi and Tomita [4], [5] and the main result in [6], respectively. Notice the (only known to us) result in [7] on toroidal multiplinear PDOs with symbols in Hörmander classes: if $1\leqslant r<\infty$ and $1\leqslant p_\nu \leqslant\infty$ satisfy $1/r=1/p_1+\cdots+1/p_N$ ($N\geqslant2$), then for each $a\in S_{10}^0(\mathbb{T}^n;N)$

$$ \begin{equation*} \widetilde{T}_a \colon \widetilde{L}_{p_1} \times\cdots\times \widetilde{L}_{p_N} \to \widetilde{L}_r. \end{equation*} \notag $$

The author would like to thank the Isaac Newton Institute in Cambridge, UK, for their support and hospitality during the programme “Discretization and recovery in high-dimensional spaces” (1–26 July 2024) where the work on this paper was undertaken.


Bibliography

1. R. R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, 57, Soc. Math. France, Paris, 1978, i+185 pp.  mathscinet  zmath
2. Y. Meyer and R. Coifman, Wavelets. Calderón–Zygmund and multilinear operators, Transl. from the French, Cambridge Stud. Adv. Math., 48, Cambridge Univ. Press, Cambridge, 1997, xx+315 pp.  mathscinet  zmath
3. C. Muscalu and W. Schlag, Classical and multilinear harmonic analysis, v. 2, Cambridge Stud. Adv. Math., 138, Cambridge Univ. Press, Cambridge, 2013, xvi+324 pp.  crossref  mathscinet  zmath
4. A. Miyachi and N. Tomita, Indiana Univ. Math. J., 62:4 (2013), 1165–1201  crossref  mathscinet  zmath
5. A. Miyachi and N. Tomita, Ann. Inst. Fourier (Grenoble), 70:6 (2020), 2737–2769  crossref  mathscinet  zmath
6. T. Kato, A. Miyachi, and N. Tomita, J. Funct. Anal., 282:4 (2022), 109329, 28 pp.  crossref  mathscinet  zmath
7. D. Cardona and V. Kumar, J. Fourier Anal. Appl., 25:6 (2019), 2973–3017  crossref  mathscinet  zmath

Citation: D. B. Bazarkhanov, “Boundedness of toroidal multilinear pseudodifferential operators with symbols in Hörmander classes”, Russian Math. Surveys, 80:1 (2025), 137–139
Citation in format AMSBIB
\Bibitem{Baz25}
\by D.~B.~Bazarkhanov
\paper Boundedness of toroidal multilinear pseudodifferential operators with symbols in H\"ormander classes
\jour Russian Math. Surveys
\yr 2025
\vol 80
\issue 1
\pages 137--139
\mathnet{http://mi.mathnet.ru/eng/rm10225}
\crossref{https://doi.org/10.4213/rm10225e}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4899629}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2025RuMaS..80..137B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001502686200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105006685701}
Linking options:
  • https://www.mathnet.ru/eng/rm10225
  • https://doi.org/10.4213/rm10225e
  • https://www.mathnet.ru/eng/rm/v80/i1/p153
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:262
    Russian version PDF:2
    English version PDF:43
    Russian version HTML:7
    English version HTML:92
    References:34
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026