Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2024, Volume 79, Issue 5, Pages 931–933
DOI: https://doi.org/10.4213/rm10198e
(Mi rm10198)
 

This article is cited in 2 scientific papers (total in 2 papers)

Brief communications

Chattering extremals in control-affine stabilization problems

N. B. Melnikova, M. I. Ronzhinab

a Lomonosov Moscow State University, Moscow, Russia
b Gubkin Russian State University of Oil and Gas "Gubkin University", Moscow, Russia
References:

Presented: N. Yu. Lukoyanov
Accepted: 08.08.2024
Published: 20.01.2025
Bibliographic databases:
Document Type: Article
MSC: Primary 34H05; Secondary 70Q05
Language: English
Original paper language: Russian

In stabilization problems, under sufficiently broad assumptions the Hamiltonian of Pontryagin’s maximum principle $H(\psi,x,u)=H_0(\psi,x)+u H_1(\psi,x)$ is a function affine in the control $|u|\leqslant 1$ (see, for instance, [1]–[5]). Therefore, the problem can have singular extremals $(\psi(t),x(t))$ such that $H_1(\psi(t),x(t))\equiv0$. A singular extremal $(\psi(t),x(t))$ has the intrinsic $l$th order if the relations

$$ \begin{equation*} \frac{\partial}{\partial u}\, \frac{d^i}{dt^i} H_1(\psi,x)=0, \quad i=1,\dots,2l-1,\quad\text{and} \quad \frac{\partial}{\partial u}\, \frac{d^{2l}}{dt^{2l}}H_1(\psi,x) \ne 0 \end{equation*} \notag $$
are valid for all $(\psi,x)$ in a neighbourhood of the singular extremal, and it has the local $l$th order if they are valid only at the points of the singular extremal itself.

In control problems for mechanical systems singular extremals of the second order exist for a generic Hamiltonian [6], [7]. If a singular extremal has the intrinsic second order and satisfies the strict Kelley condition, then any non-singular extremal that hits the singular one must be a chattering extremal, that is, it must have an infinite number of control discontinuities on a finite interval of time. The existence of chattering extremals in a neighbourhood of a singular extremal of the local second order has been proved for a Hamiltonian system that can be reduced to the form [6]

$$ \begin{equation*} \begin{alignedat}{3} \dot{z}_1 &=z_2+f_1(z,w,u), &\quad \dot{z}_3 &=z_4+f_3(z,w,u), &\quad \dot{w} &=F(z,w,u), \\ \dot{z}_2 &=z_3+f_2(z,w,u), &\quad \dot{z}_4 &=\alpha(w)+\beta(w)u+f_4(z,w,u), &\quad u &= \operatorname{sgn} z_1, \end{alignedat} \end{equation*} \notag $$
where the functions $f_i(z,w,u)$ are of small order: $f_i (g_\lambda(z),w,u)=O(\lambda^{5-i})$ as $\lambda\to 0$ with respect to the action of the Fuller group $g_\lambda(z)=(\lambda^4 z_1,\lambda^3 z_2,\lambda^2 z_3,\lambda z_4)$, $\lambda > 0$. For the variables $(z,w)$ defined by Poisson brackets of a special form, the conditions on $f_i(z,w,u)$ can be weakened [7]. But these Poisson brackets can turn out to be functionally dependent. For the stabilization problem at the origin of $K+1$ degrees of freedom in a system with $N$ degrees of freedom the following holds.

Theorem 1. Let $(z,w,v)\in\mathbb{R}^{4N}$, where $w=(w_1,\dots,w_K)\in\mathbb{R}^{4K}$ and $v\in\mathbb{R}^{4L}$, be a coordinate system such that $(z_0,w_0,v_0)=(0,0,v_0)$ is a point on a singular extremal of the second order, and in some neighbourhood the Hamiltonian system can be written in the form

$$ \begin{equation} \begin{aligned} \, \dot{z}_1 &=z_2+f_1(z,w,v,u), \qquad \dot w_{i1} =w_{i2}+h_{i1}(z,w,v,u), \qquad \dot v =F(z,w,v,u), \\ \dot{z}_2 &=z_3+f_2(z,w,v,u), \qquad \dot w_{i2} =w_{i3}+h_{i2}(z,w,v,u), \qquad u=\operatorname{sgn} z_1, \\ \dot z_3 &=z_4+f_3(z,w,v,u), \qquad \dot w_{i3} =w_{i4}+h_{i3}(z,w,v,u), \\ \dot z_4 &=\alpha(v)+\beta(v)u+ f_4(z,w,v,u), \qquad \dot w_{i4}=\gamma_{i}(v)+\nu_{i}(v)u + h_{i4}(z,w,v,u), \end{aligned} \end{equation} \tag{1} $$
where $\alpha(v_0)=0$, $\beta(v_0)=-1$ and $\gamma_{i}(v_0)=0$, $\nu_{i}(v_0)=-1$ $(i=1,\dots,K)$. Let $f_j$ and $h_{ij}$ be small in the following sense as $\lambda\to 0$:
$$ \begin{equation*} f_j\bigl(g_\lambda(z),g_\lambda(w_1),\dots, g_\lambda(w_K),v,u\bigr), h_{ij}\bigl(g_\lambda(z),g_\lambda(w_1),\dots,g_\lambda(w_K),v,u\bigr )= O(\lambda^{5-j}), \end{equation*} \notag $$
where $g_\lambda(z)$ is the action of the Fuller group. Then there exists a two-dimensional integral surface consisting of chattering extremals reaching $(z_0,w_0 ,v_0)=(0,0,v_0)$ in finite time.

We outline the proof for the case of two degrees of freedom ($K=1$ and $L=0$). For system (1) we define the Poincaré map $\Phi\colon \Sigma\to\Sigma$ of the control switching surface $\Sigma=\{(z,w) \mid z_1=0\}$ onto itself. We resolve the singularity of the two-fold Poincaré map $\Phi^2$ using the change of variables

$$ \begin{equation*} \begin{alignedat}{4} z_1 &= \xi_4^4 \xi_1, &\quad z_2 &= \xi_4^3 \xi_2, &\quad z_3 &= \xi_4^2 \xi_3, &\quad z_4 &= \xi_4, \\ w_1 &= \xi_4^4 \eta_1, &\quad w_2 &= \xi_4^3 \eta_2, &\quad w_3 &= \xi_4^2 \eta_3, &\quad w_4 &= \xi_4 \eta_4. \end{alignedat} \end{equation*} \notag $$
We find the fixed point $(\xi^*,\eta^*)=(0,\xi^{*}_2,\xi^{*}_3,0,0,\xi^{*}_2,\xi^{*}_3,1)$ of $\Phi^2$ on the surface $\xi_4=0$, which corresponds to the chattering extremals reaching zero. We calculate the differential of $\Phi^2$ at this fixed point:
$$ \begin{equation*} D\Phi^2(\xi^{*},\eta^{*})\,{=}\! \begin{pmatrix} \dfrac{\partial\xi^{(2)}_2}{\partial\xi_2} & \dfrac{\partial\xi^{(2)}_2}{\partial\xi_3} & * & 0 & 0 & 0 & 0 \\ \dfrac{\partial\xi^{(2)\vphantom{\sum^0}}_3}{\partial\xi_2}\! & \dfrac{\partial\xi^{(2)}_3}{\partial\xi_3}\! & * & 0 & 0 & 0 & 0 \\ 0 & 0 & \!\!(1+\tau_1^*)^2\!\! & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \!(1+\tau_1^*)^{-8}\!\! & * & * & * \\ 0 & 0 & 0 & 0 & \!(1+\tau_1^*)^{-6}\!\! & * & * \\ 0 & 0 & 0 & 0 & 0 & \!(1+\tau_1^*)^{-4}\!\! & * \\ 0 & 0 & 0 & 0 & 0 & 0 & \!(1+\tau_1^*)^{-2}\! \end{pmatrix}. \end{equation*} \notag $$
We show that the fixed point $(\xi^*,\eta^*)$ of $\Phi^2$ is hyperbolic. Applying the invariant manifold theorem (see [8]) we obtain that the stable submanifold is one-dimensional, and the eigenvalue $(1+ \tau_1^*)^2\in(0,1)$ of the map $D\Phi^2(\xi^*,\eta^*)$ corresponds to an eigenvector transversal to the plane $\xi_4=0$. Returning to the coordinates $(z,w)$, we write the invariant curve in the form $z_1=0$, $z_2=\xi_2^* z_4^3+o(z_4^3)$, $z_3=\xi_3^* z_4^2+o(z_4^2)$, $w=z$. This curve defines a two-dimensional integral submanifold of system (1), which is filled by chattering extremals going to the origin.

As an example we consider the stabilization problem for a nonlinear system consisting of a beam pivoted in the middle and a ball that can roll along this beam [9]. The chattering-bundle theorems [6], [7] are not applicable here, but Theorem 1 ensures the existence of chattering extremals.


Bibliography

1. N. N. Krasovskii, J. Math. Sci. (N. Y.), 100:5 (2000), 2458–2469  mathnet  crossref  mathscinet  zmath
2. I. Fantoni and R. Lozano, Non-linear control for underacuated mechanical systems, Comm. Control Engrg. Ser., Springer, London, 2002, xi+295 pp.  crossref
3. A. M. Formalskii, Stabilisation and motion control of unstable objects, De Gruyter Stud. Math. Phys., 33, De Gruyter, Berlin, 2015, xvi+239 pp.  crossref  mathscinet  zmath
4. M. I. Ronzhina, J. Appl. Math. Mech., 80:1 (2016), 16–23  crossref  mathscinet  zmath  adsnasa
5. L. A. Manita and M. I. Ronzhina, J. Math. Sci. (N. Y.), 221:1 (2017), 137–153  mathnet  crossref  mathscinet  zmath
6. M. I. Zelikin and V. F. Borisov, Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Systems Control: Found. Appl., Birkhäuser, Boston, MA, 1994, xvi+244 pp.  crossref  mathscinet  zmath
7. M. I. Zelikin and V. F. Borisov, J. Math. Sci. (N. Y.), 114:3 (2003), 1227–1344  mathnet  crossref  mathscinet  zmath
8. M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer, Berlin, 1977, vi+150 pp.  crossref  mathscinet  zmath
9. C. Lare, W. N. White, and S. Hossain, J. Dyn. Sys. Meas. Control, 141:12 (2019), 121006, 11 pp.  crossref

Citation: N. B. Melnikov, M. I. Ronzhina, “Chattering extremals in control-affine stabilization problems”, Russian Math. Surveys, 79:5 (2024), 931–933
Citation in format AMSBIB
\Bibitem{MelRon24}
\by N.~B.~Melnikov, M.~I.~Ronzhina
\paper Chattering extremals in control-affine stabilization problems
\jour Russian Math. Surveys
\yr 2024
\vol 79
\issue 5
\pages 931--933
\mathnet{http://mi.mathnet.ru/eng/rm10198}
\crossref{https://doi.org/10.4213/rm10198e}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4851673}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024RuMaS..79..931M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001439002700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85217037628}
Linking options:
  • https://www.mathnet.ru/eng/rm10198
  • https://doi.org/10.4213/rm10198e
  • https://www.mathnet.ru/eng/rm/v79/i5/p187
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:436
    Russian version PDF:21
    English version PDF:37
    Russian version HTML:57
    English version HTML:147
    References:52
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026