Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2024, Volume 79, Issue 4, Pages 727–729
DOI: https://doi.org/10.4213/rm10185e
(Mi rm10185)
 

Brief communications

One property of the multiple Rademacher system and its applications to problems of graph discrepancy

S. V. Astashkinabc, K. V. Lykovde

a Samara National Research University, Samara, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Bahcesehir University, Istanbul, Turkey
d Belarusian State University
e Institute of Mathematics of the National Academy of Sciences of Belarus
References:
Funding agency Grant number
Russian Science Foundation 23-71-30001
National Academy of Sciences of Belarus
The results in § 1 were obtained by S. V. Astashkin at Lomonosov Moscow State University with the financial support from the Russian Science Foundation, project no. 23-71-30001. The results in § 2 were obtained by K. V. Lykov with the financial support from the State Research Programme “Convergence-2025” of the National Academy of Sciences of Belarus.

Presented: A. M. Raigorodskii
Accepted: 24.06.2024
Published: 26.11.2024
Bibliographic databases:
Document Type: Article
MSC: Primary 46B09; Secondary 05C15, 05C35, 46E30
Language: English
Original paper language: Russian

1.

The distribution of sums $\sum_{i,j}c_{i,j}\sigma_i\sigma_j$, where $\sigma_i=\pm 1$, and estimates of their extreme and mean values have great importance in various branches of mathematics and its applications, which range from spin glasses [1] to the geometry of Banach spaces [2]. The coefficients $c_{i,j}$ and the quantities $\sigma_i$ are either deterministic or random, depending on the problem. In the present note we assume that $\sigma_i= r_i(t)$, $\sigma_j=r_j(s)$, where $(t,s)\in I^2$, $I=[0,1]$, and the $r_k(u)$ are the Rademacher functions [3], that is, $r_k(u):=(-1)^{[2^k u]}$, $k\in\mathbb{N}$, $u\in I$. As $c_{i,j}$ we take $r_{i,j}(\omega)a_{i,j}$, where $r_{i,j}$ are the Rademacher functions indexed by pairs $(i,j)$ in an arbitrary order.

Theorem 1. For all $n\in\mathbb{N}$ and $a_{i,j}\in\mathbb{R}$, $1\leqslant i,j\leqslant n$,

$$ \begin{equation*} \begin{aligned} \, &\int_0^1\biggl\|\,\sum_{1\leqslant i,j\leqslant n} r_{i,j}(\omega) a_{i,j} r_i(u)r_j(v)\biggr\|_{L_\infty(I^2)}\,d\omega \\ &\qquad\asymp\min_{\theta_{i,j}=\pm 1}\biggl\|\,\sum_{1\leqslant i,j\leqslant n} \theta_{i,j}a_{i,j}r_i(u)r_j(v)\biggr\|_{L_\infty(I^2)} \\ &\qquad\asymp\max\biggl\{\,\sum_{i=1}^n\biggl(\,\sum_{j=1}^n a_{i,j}^2\biggr)^{1/2}, \sum_{j=1}^n\biggl(\,\sum_{i=1}^n a_{i,j}^2\biggr)^{1/2}\biggr\} \end{aligned} \end{equation*} \notag $$
with universal constants.

The first equivalence in the theorem means that $\{r_i(t)r_j(s)\}_{i,j=1}^\infty$ is a random unconditional convergence system [4] in $L_\infty(I^2)$. Using the decoupling method (see, for instance, [5]) it can be shown that this property is satisfied for the Rademacher chaos $\{r_i(t)r_j(t)\}_{i\ne j}$ in $L_\infty(I)$. Moreover, an analogue of Theorem 1 also holds for products of Rademacher functions of arbitrary multiplicity.

The proof of Theorem 1 is based, first, on the equality

$$ \begin{equation} \biggl\|\sum_{1\leqslant i,j\leqslant n}b_{i,j}r_i(u) r_j(v)\biggr\|_{L_\infty(I^2)}=\|B\colon l_\infty^n\to l_1^n\|, \end{equation} \tag{1} $$
which holds for each matrix $B=(b_{i,j})_{1\leqslant i,j\leqslant n}$ (the norm on the right is the operator norm from $l_\infty^n$ to $l_1^n$), and, second, on an upper estimate from [6] for the expectation $\mathsf{E}\|G_B\colon l_\infty^n\to l_1^n\|$, where $G_B=(g_{i,j}b_{i,j})_{1\leqslant i,j\leqslant n}$ ($g_{i,j}$ are the independent standard Gaussian random variables). Note also that in the particular case when $a_{i,j}=\pm1$ the result of Theorem 1 has been known for quite a long time (see [7]).

2.

The study of the efficiency of some approximative and numerical algorithms is facilitated by the use of the cut-norm of a matrix $(a_{i,j})_{i,j=1}^n$ defined by

$$ \begin{equation*} \|(a_{i,j})\|^{\vphantom{\sum}}_{\rm C}:=\max\biggl\{\biggl|\,\sum_{i\in I,j\in J} a_{i,j}\biggr|\colon I,J\subset\{1,2,\dots,n\}\biggr\}. \end{equation*} \notag $$
According to Alon and Naor (see Lemma 3.1 in [8]),
$$ \begin{equation} \|(a_{i,j})\|^{\vphantom{\sum}}_{\rm C}\leqslant \|(a_{i,j})\colon l_\infty^n\to l_1^n\| \leqslant 4\|(a_{i,j})\|^{\vphantom{\sum}}_{\rm C}. \end{equation} \tag{2} $$
This inequality can be used to reveal relationships between the properties of the multiple Rademacher system obtained in Theorem 1 and some problems in extremal graph theory.

Let us consider the complete bipartite graph $K_{n,n}$, and associate a weight (a real number) $a_{i,j}$ with each edge $(i,j)$ of this graph. The problem here is to evaluate the quantity

$$ \begin{equation*} \operatorname{disc}(K_{n,n},\{a_{i,j}\}):=\min_{\omega\in[0,1]}\, \max\biggl\{\biggl|\,\sum_{i\in I,j\in J}r_{i,j}(\omega)a_{i,j}\biggr|\colon I,J\subset\{1,2,\dots,n\}\biggr\}. \end{equation*} \notag $$
Problems of this type are known as discrepancy problems (see, for example, [9] and [10]). Here, we speak about edge colouring (putting $\pm$ signs on the edges). In the unweighed case, the corresponding problem for the complete graph $K_n$ was solved by Erdős and Spencer [11]. The result below follows from Theorem 1 and (1), (2).

Corollary. For all $n\in\mathbb{N}$ and $a_{i,j}\in\mathbb{R}$,

$$ \begin{equation*} \operatorname{disc}(K_{n,n},\{a_{i,j}\})\asymp \max\biggl\{\,\sum_{i=1}^n\biggl(\,\sum_{j=1}^n a_{i,j}^2\biggr)^{1/2}, \sum_{j=1}^n\biggl(\,\sum_{i=1}^n a_{i,j}^2\biggr)^{1/2}\biggr\} \end{equation*} \notag $$
with universal constants.

Theorem 1 also gives a new method for the construction of concrete examples of vertex-allowbreak weighted hypergraphs for which the discrepancy estimates are (order) sharp. In this case, as vertices one should consider positions in the matrix $A=(a_{i,j})_{i,j=1}^n$, and as hyperedges, sets of positions specified by submatrices. This method supplements the available constructions (see, for example, [12]).

The authors are grateful to A. M. Raigorodskii and D. D. Cherkashin for some helpful discussions.


Bibliography

1. M. Talagrand, Mean field models for spin glasses, v. I, Ergeb. Math. Grenzgeb. (3), 54, Basic examples, Springer, Heidelberg, 2011, xviii+485 pp.  crossref  mathscinet  zmath; v. II, Ergeb. Math. Grenzgeb. (3), 55, Advanced replica-symmetry and low temperature, 2011, xii+629 pp.  crossref  mathscinet  zmath
2. S. V. Astashkin and K. V. Lykov, Izv. Math., 88:1 (2024), 1–17  mathnet  crossref  mathscinet  zmath  adsnasa
3. S. V. Astashkin, The Rademacher system in function spaces, Birkhäuser/Springer, Cham, 2020, xx+559 pp.  crossref  mathscinet  zmath
4. P. Billard, S. Kwapień, A. Pełczyński, and Ch. Samuel, Texas functional analysis seminar 1985–1986 (Austin, TX 1985–1986), Longhorn Notes, Univ. Texas, Austin, TX, 1986, 13–35  mathscinet  zmath
5. V. H. de la Peña and E. Giné, Decoupling. From dependence to independence. Randomly stopped processes. $U$-statistics and processes. Martingales and beyond, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1999, xvi+392 pp.  crossref  mathscinet  zmath
6. R. Adamczak, J. Prochno, M. Strzelecka, and M. Strzelecki, Math. Ann., 388:4 (2024), 3463–3527  crossref  mathscinet  zmath
7. G. Bennett, Duke Math. J., 44:3 (1977), 603–639  crossref  mathscinet  zmath
8. N. Alon and A. Naor, STOC {'}04: Proceedings of the 36th annual ACM symposium on theory of computing, ACM Press, New York, 2004, 72–80  crossref  mathscinet  zmath
9. N. Alon and J. H. Spencer, The probabilistic method, Wiley-Intersci. Ser. Discrete Math. Optim., 2nd ed., Wiley-Interscience [John Wiley & Sons], New York, 2000, xviii+301 pp.  crossref  mathscinet  zmath
10. A. M. Raigorodskii and D. D. Cherkashin, Russian Math. Surveys, 75:1 (2020), 89–146  mathnet  crossref  mathscinet  zmath  adsnasa
11. P. Erdös and J. Spencer, Networks, 1:4 (1971/72), 379–385  crossref  mathscinet  zmath
12. J. Balogh, D. Cherkashin, and S. Kiselev, European J. Combin., 79 (2019), 228–236  crossref  mathscinet  zmath

Citation: S. V. Astashkin, K. V. Lykov, “One property of the multiple Rademacher system and its applications to problems of graph discrepancy”, Russian Math. Surveys, 79:4 (2024), 727–729
Citation in format AMSBIB
\Bibitem{AstLyk24}
\by S.~V.~Astashkin, K.~V.~Lykov
\paper One property of the multiple Rademacher system and its applications to problems of graph discrepancy
\jour Russian Math. Surveys
\yr 2024
\vol 79
\issue 4
\pages 727--729
\mathnet{http://mi.mathnet.ru/eng/rm10185}
\crossref{https://doi.org/10.4213/rm10185e}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4831501}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024RuMaS..79..727A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001386665900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85211463748}
Linking options:
  • https://www.mathnet.ru/eng/rm10185
  • https://doi.org/10.4213/rm10185e
  • https://www.mathnet.ru/eng/rm/v79/i4/p173
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:391
    Russian version PDF:17
    English version PDF:33
    Russian version HTML:46
    English version HTML:165
    References:64
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026