Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2023, Volume 78, Issue 4, Pages 788–790
DOI: https://doi.org/10.4213/rm10117e
(Mi rm10117)
 

Brief communications

Keplerian orbits and global asymptotic solution in the form of an Airy function for the scattering problem on a repulsive Coulomb potential

S. Yu. Dobrokhotova, S. B. Levinb, A. A. Tolchennikova

a Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
b Saint Petersburg State University
References:
Funding agency Grant number
Russian Science Foundation 21-11-00341
This research was supported by the Russian Science Foundation under grant no. 21-11-00341.
Received: 05.12.2022
Bibliographic databases:
Document Type: Article
MSC: Primary 34L40, 81Q20; Secondary 33C10
Language: English
Original paper language: Russian

We consider the following scattering problem:

$$ \begin{equation} -h^2 \Delta \psi+V(x) \psi=E\psi, \quad V=\gamma|x|^{-1}, \quad \psi \to e^{ikx_1}, \quad \ \ x_1\to -\infty,\quad x\in \mathbb{R}^3_x; \end{equation} \tag{1} $$
here $h$, $\gamma$, and $k$ are positive parameters and $E=k^2$. The function $\psi$ must satisfy the Sommerfeld radiation conditions as $|x|\to \infty$; we do not need this condition. The exact solution of this problem is well known ([1], formulae (5.1) and (5.2)); it is expressed in terms of a confluent hypergeometric function. The aim of this note is to show that for small $h$ the (quasiclassical) asymptotics of the solution $\psi$ can explicitly and globally be expressed in terms of the Airy function $\operatorname{Ai}$ and its derivative $\operatorname{Ai}'$ of a certain complex argument defined given by the well-known Keplerian orbits (for instance, see [2]).

The quasiclassical asymptotics of the scattering problem for the $n$-dimensional Schrödinger equation and a (smooth) potential $V(x)$ with compact support was studied in [3] and [4]. It can be represented in the form of the Maslov canonical operator $K^h_{\Lambda^n}\cdot 1$ (applied to $1$) on the $n$-dimensional (invariant) Lagrangian manifold $\Lambda^n$ formed by trajectories of the Hamiltonian system with Hamiltonian $H=p^2+V(x)$ in a $2n$-dimensional phase space that come out of a suitable $(n-1)$-dimensional plane $\widetilde\Lambda^{n-1}$.

In the case of problem (1), finding the asymptotic behaviour of the solution follows a similar pattern. In the case of a problem with Coulomb potential, there is a significant difference from the problem where the potential has a compact support: the plane $\widetilde\Lambda^{2}$ in the phase space must be ‘taken to the appropriate infinity’. We implement this idea as follows. The corresponding Hamiltonian system is integrable, and its solutions are well-known Keplerian orbits, whose projections $\Gamma$ onto the physical space are hyperbolae lying in planes passing through the origin. These hyperbolae have asymptotes, which are their limits as $t\to\pm\infty$. We select Keplerian orbits so that the corresponding asymptotes are orthogonal to the plane ($x_1=0$, $x_2=\alpha_2=\eta\cos\theta$, $x_3=\alpha_3=\eta\sin\theta$), and the corresponding momentum vector tends to the vector with components $(k,0,0)$ as $ t\to-\infty$. Then we obtain a family of orbits $P$, $X$ depending on $t$ (or some analogue of time) and the parameters $(\eta,\theta)$. Since the dependence of Keplerian orbits on time $t$ is described parametrically, in parametrizing the Lagrangian manifold it is more convenient to replace $t$ by a more suitable parameter $\sigma$. This produces the Lagrangian manifold $\Lambda^3=\{p=P(\sigma,\eta,\theta), x= X(\sigma,\eta,\theta),\sigma \in (0,\infty),\eta\in (0,\infty), \theta \in S^1\}$, where the vectors $X$ and $P$ have components defined by the equalities (where $\mathbf{n}_2(\theta)=\cos\theta$, and $\mathbf{n}_3(\theta)= \sin\theta$)

$$ \begin{equation*} X_1=\frac{\gamma}{2k^2} \biggl( \frac{\sigma \eta^2}{2}- \frac{(\sigma+1)^2}{2\sigma} \biggr),\qquad X_{2,3}=\frac{\gamma}{2k^2}\,\eta (\sigma+1) \,\mathbf{n}_{2,3}(\theta) \end{equation*} \notag $$
and
$$ \begin{equation*} P_1=k\,\frac{-\sigma+\sigma \eta^2+1/\sigma} {\sigma+\sigma \eta^2+1/\sigma+2}\,, \qquad P_{2,3}=k\,\frac{2 \eta \sigma}{\sigma+\sigma \eta^2+1/\sigma+2}\, \mathbf{n}_{2,3}(\theta). \end{equation*} \notag $$
Here $t=\dfrac{\gamma}{4k^3}\biggl(\dfrac{\sigma+\sigma\eta^2-1/\sigma}{2}+ \log \sigma+\dfrac{\log(1+\eta^2)}{2}\biggr)$. As $t\to -\infty$, we have
$$ \begin{equation*} \begin{gathered} \, \sigma \to 0,\quad X_1\to -\infty, \quad X_{2,3} \to \frac{\gamma \eta}{2k^2}\mathbf{n}_{2,3}(\theta)= X_{2,3}^{\lim},\quad P_1\to k,\quad P_{2,3}\to 0. \end{gathered} \end{equation*} \notag $$
Now we describe the objects involved in the asymptotic representation of the solution of (1) presented in the form $\psi_{\rm as}=K^h_{\Lambda^3}\cdot 1$.

The invariant measure $\mu$ on $\Lambda^3$ is defined by

$$ \begin{equation*} \mu=d X_2^{\lim} \wedge dX_3^{\lim} \wedge dt=\biggl[\frac{\gamma^3}{32 k^7}\biggr] \eta\biggl(\eta^2+\biggl(1+\frac1{\sigma}\biggr)^2\biggr)\,d\eta\wedge d \theta \wedge d\sigma, \end{equation*} \notag $$
and the Jacobian of the projection of $\Lambda^3$ onto $\mathbb R^3_x$ is $J=\mu^{-1}\,d X_1 \wedge d X_2 \wedge d X_3=2k(1-\sigma^2)$. We fix the (non-singular) central point with coordinates $\sigma=1-0$, $\eta=0$, and $\theta=0$ on $\Lambda^3$. The Lagrangian singularity on $\Lambda^3$, defined by $\sigma=1$, is a simple caustic (a fold), which has the form of the paraboloid of revolution $x_1=[k^2/(4\gamma)](x_2^2+x_3^2)-\gamma/k^2$. The projection $\pi_x\Lambda^3$ of $\Lambda^3$ onto $\mathbb{R}^3_x$ is the set $\{x\in \mathbb{R}^3\colon x_1 \leqslant [k^2/(4\gamma)](x_2^2+x_3^2)- \gamma/k^2\}$. Each interior point $x\in \pi_x\Lambda^3$ has the two preimages with coordinates $\sigma_\pm$, $\eta_\pm$, and $\theta$ on $\Lambda^3$, where
$$ \begin{equation*} \begin{gathered} \, \sigma_\pm=z \pm \sqrt{z^2-1}\,, \\ \eta_\pm=\frac{2k^2}{\gamma}\,\frac{\sqrt{x_2^2+x_3^2}}{z+1\pm\sqrt{z^2-1}} \end{gathered} \end{equation*} \notag $$
and
$$ \begin{equation*} z(x)=\frac{k^2}{\gamma}\bigl(-x_1+\sqrt{x_2^2+x_3^2}\,\bigr)-1. \end{equation*} \notag $$
Outside a neighbourhood of the caustic $\Lambda^3$ can be covered by two non-singular (non-compact) domains, with Maslov indices set to be $m_-=0$ and $m_+=1$. The action function on $\Lambda^3$ is $S=[\gamma/(2k)](-\log \sigma+\sigma \eta^2/2-1/(2\sigma)+\sigma/2)$. At the points $x\in \pi_x\Lambda^3$ it generates the two phases $S_\pm(x)=[\gamma/(2k)]\bigl[-\log (z\pm \sqrt{z^2-1}\,)+ z \pm \sqrt{z^2-1}+1\bigr]+kx_1$, and the WKB-asymptotics at interior points of $\pi_x\Lambda^3$ is as follows: $\psi_{\rm as}(x)=\sum_\pm A_\pm(x) e^{(i/h)S_\pm(x)}$, $A_\pm(x)=e^{-i\pi m_\pm/2}/[\sqrt{2k}\,(z^2-1)^{1/4}(\sqrt{z+1}\pm \sqrt{z-1}\,)]$ . Here the term with subscript $+$ corresponds to the incoming wave and the one with subscript $-$, to the reflected wave.

Another important feature of the problem considered consists in the fact that, using arguments from [5] and [6], we can globally express the asymptotics of the solution in terms of the functions $\operatorname{Ai}$ and $\operatorname{Ai}'$. Consider the functions $\Theta(x)=(S_++S_-)/2=k\bigl(x_1+\sqrt{x_2^2+x_3^2}\,\bigr)/2$ for $x\in \mathbb{R}^3_x$ and $\Psi=(S_+- S_-)/2=[\gamma/(2k)][\sqrt{z^2-1}- \log (z+\sqrt{z^2-1}\,)]$ for $x\in \pi_x\Lambda^3$. Note that $\Psi \sim [\gamma/(12k)](2(z-1))^{3/2}$ as $z\to 1+0$. Let $\Phi$ and $A_\pm$ be the functions defined by $\Phi(x)=(3\Psi(x)/2)^{2/3}$ and $A_\pm(x) =(3\Psi(x)/2)^{\pm1/6} [(z+1)/(z-1)]^{\pm1/4} /\sqrt{2k}$ for $z(x)>1$ and by $\Phi(x)=(\gamma/k)^{2/3}(z-1)/2$ and $A_\pm(x)=(\gamma/k)^{\pm1/6}/\sqrt{2k}$ for $z(x)\leqslant 1$.

Theorem. The leading term of the asymptotic solution $\psi_{\rm as}=K^h_{\Lambda^3}\cdot 1$ of problem (1) is described by the formula

$$ \begin{equation*} \psi_{\rm as}\simeq e^{i\Theta/h}\sqrt{\pi}\, \biggl[h^{-1/6}e^{-i\pi/4} \operatorname{Ai} \biggl(-\frac{\Phi(x)}{h^{2/3}}\biggr)A_+(x)- h^{1/6}e^{i\pi/4}\operatorname{Ai}' \biggl(-\frac{\Phi(x)}{h^{2/3}}\biggr)A_-(x)\biggr]. \end{equation*} \notag $$


Bibliography

1. L. D. Faddeev and S. P. Merkuriev, Quantum scattering theory for several particle systems, Math. Phys. Appl. Math., 11, Kluwer Acad. Publ., Dordrecht, 1993, xiv+404 pp.  crossref  mathscinet  zmath
2. L. D. Landau and E. M. Lifshitz, Course of theoretical physics, v. 1, Mechanics, 2d ed., Pergamon Press, Oxford, 1987, 169 pp.  mathscinet
3. V. P. Maslov and M. V. Fedoriuk, Semi-classical approximation in quantum mechanics, Math. Phys. Appl. Math., 7, D. Reidel Publishing Co., Dordrecht–Boston, Mass., 1981, ix+301 pp.  mathscinet  zmath
4. B. Vainberg, Asymptotic methods in equations of mathematical physics, Gordon and Breach Sci. Publ., New York, 1989, viii+498 pp.  mathscinet  zmath
5. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, Theoret. and Math. Phys., 201:3 (2019), 1742–1770  mathnet  crossref  mathscinet  zmath  adsnasa
6. S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. I. Shafarevich, Russian Math. Surveys, 76:5 (2021), 745–819  mathnet  crossref  mathscinet  zmath

Citation: S. Yu. Dobrokhotov, S. B. Levin, A. A. Tolchennikov, “Keplerian orbits and global asymptotic solution in the form of an Airy function for the scattering problem on a repulsive Coulomb potential”, Russian Math. Surveys, 78:4 (2023), 788–790
Citation in format AMSBIB
\Bibitem{DobLevTol23}
\by S.~Yu.~Dobrokhotov, S.~B.~Levin, A.~A.~Tolchennikov
\paper Keplerian orbits and global asymptotic solution in the form of an Airy function for the scattering problem on a repulsive Coulomb potential
\jour Russian Math. Surveys
\yr 2023
\vol 78
\issue 4
\pages 788--790
\mathnet{http://mi.mathnet.ru//eng/rm10117}
\crossref{https://doi.org/10.4213/rm10117e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4687812}
\zmath{https://zbmath.org/?q=an:1537.81198}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023RuMaS..78..788D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001146060800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185660144}
Linking options:
  • https://www.mathnet.ru/eng/rm10117
  • https://doi.org/10.4213/rm10117e
  • https://www.mathnet.ru/eng/rm/v78/i4/p205
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:410
    Russian version PDF:24
    English version PDF:89
    Russian version HTML:122
    English version HTML:131
    References:83
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024