Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2022, Volume 77, Issue 6, Pages 1152–1154
DOI: https://doi.org/10.4213/rm10086e
(Mi rm10086)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief Communications

Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries

A. D. Baranova, I. R. Kayumovba

a Saint Petersburg State University
b Kazan Federal University
References:
Funding agency Grant number
Russian Science Foundation 20-61-46016
The work was supported by the Russian Science Foundation (project no. 20-61-46016).
Received: 01.11.2022
Bibliographic databases:
Document Type: Article
MSC: 30A10, 30C55
Language: English
Original paper language: Russian

Estimates of the norms of rational functions and their derivatives in different function spaces can be considered as classical problems in function theory. A natural generalization of rational functions is the concept of an $n$-valent function. Recall that a function $f$ is called $n$-valent in a domain $G$ if the equation $f(z)=w$ has at most $n$ solutions in $G$ for any $w\in\mathbb{C}$.

The purpose of this note is to prove the following theorem.

Theorem 1. Let $p \in (1,2]$ and let $G$ be a simply connected domain with rectifiable boundary $\gamma$ of length $L=\ell(\gamma)$. Then there exists a positive constant $C_p$ such that for every $n$-valent bounded function $R$ in $G$ the following inequality holds:

$$ \begin{equation} \int_{G} |R'(w)|^p\,dA(w) \leqslant C_p L^{2-p} n^{p-1} \|R\|^p_{H^\infty(G)}, \end{equation} \tag{1} $$
where the symbol $dA$ denotes the Lebesgue measure on the plane. Moreover, $C_p \leqslant K/(p-1)$, where $K$ is an absolute constant.

In particular, inequality (1) is true for every rational function $R$ of degree at most $n$ with poles outside $\overline{G}$.

One of the first results in this direction was obtained by Dolzhenko [1], who showed that under certain conditions on the regularity of the boundary (the existence of a curvature satisfying the Hölder condition), for any rational function of order $n$ an inequality of the form (1) holds with the quantity $C_p(G) n^{p-1}\|R\|^p_{H^\infty(G)}$ on the right-hand side.

Subsequently, integral inequalities for derivatives of rational functions (mainly in a disc) were considered by Peller [2], Semmes [3], Pekarskii [4], Mardvilko and Pekarskii [5], Danchenko [6], [7], Dyn’kin [8], [9], and many others. In our recent work [10] Dolzhenko’s result was extended to Hölder domains, and also to finitely connected John domains.

In the proof of the theorem we use the following (well-known) geometric lemma.

Lemma. Let $G$ be a simply connected domain with rectifiable boundary $\gamma$ of length $L$. For $\varepsilon>0$ set $H_\varepsilon=\{w\in G\colon \operatorname{dist}(w,\gamma)<\varepsilon\}$. Then

$$ \begin{equation} S(H_\varepsilon) \leqslant C\varepsilon L, \end{equation} \tag{2} $$
where $S(H_\varepsilon)$ is the area of the set $H_\varepsilon$, and $C>0$ is an absolute constant.

Proof of Theorem 1. Let $d_G(w)=\operatorname{dist}(w,\gamma)$. We set $\varepsilon=L/n$ and consider the sets $G_{\varepsilon}=\{w\in G\colon d_G(w) \geqslant \varepsilon\}$ and $H_{\varepsilon}=\{w\in G\colon d_G(w)<\varepsilon\}$. Then
$$ \begin{equation*} \int_{H_{\varepsilon}}|R'(w)|^p\,dA(w) \leqslant \biggl(\int_{H_{\varepsilon}}|R'(w)|^2\,dA(w)\biggr)^{p/2} (S(H_{\varepsilon}))^{1-p/2}. \end{equation*} \notag $$
Since the function $R$ is $n$-valent, we have
$$ \begin{equation*} \int_G |R'(w)|^2\,dA(w) \leqslant n\|R\|^2_{H^\infty(G)}. \end{equation*} \notag $$
Using (2) we easily obtain
$$ \begin{equation*} \int_{H_{\varepsilon}} |R'(w)|^p\,dA(w) \leqslant C L^{2-p} n^{p-1}\|R\|^p_{H^\infty(G)}, \end{equation*} \notag $$
where $C>0$ is a constant that does not depend on $p$, $n$, $G$, or $R$.

Now we estimate the integral with respect to $G_{\varepsilon}$. Using the inequality $|R'(w)| \leqslant d_G^{-1} (w)$ we have

$$ \begin{equation*} \int_{G_\varepsilon}|R'(w)|^p\,dA(w) \leqslant \int_{G_\varepsilon} d_G^{-p}(w)\,dA(w). \end{equation*} \notag $$
Let $\varphi$ be the conformal mapping of the disc $\{|z|<1\}$ onto $G$. Then $\varphi'$ belongs to the Hardy space $H^1$ in the disc and $\|\varphi'\|_{H^1}=L$. It is well known that $2|\varphi'(z)|(1-|z|) \geqslant d_G(\varphi(z))\geqslant |\varphi'(z)|(1-|z|^2)/4$. Hence
$$ \begin{equation*} \int_{G_{\varepsilon}}d_G^{-p}(w)\,dA(w) \leqslant 4^p \iint_{2(1-r)|\varphi'(re^{it})| \geqslant\varepsilon} \frac{|\varphi'(re^{it})|^{2-p}}{(1-r)^p}\,r\,dr\,dt. \end{equation*} \notag $$
To estimate the last integral it will be convenient to use the Hardy–Littlewood maximal function $\varphi'_*(t):=\sup\{|\varphi'(re^{it})|\colon r \in [0,1)\}$. We have
$$ \begin{equation*} \begin{aligned} \, &\iint_{2(1-r)|\varphi'(re^{it})| \geqslant \varepsilon} \frac{|\varphi'(re^{it})|^{2-p}}{(1-r)^p}\,r\,dr\,dt \\ &\qquad\leqslant \int_{0}^{2\pi} dt \int_{0}^{1-\varepsilon/(2\varphi'_*(t))} \frac{(\varphi'_*(t) )^{2-p}}{(1-r)^p}\,dr \\ &\qquad\leqslant \frac{2^{p-1}}{p-1}\int_0^{2\pi} (\varphi'_*(t))^{2-p}\varepsilon^{1-p}(\varphi'_*(t))^{p-1}\,dt \\ &\qquad\leqslant \frac{2^{p-1} L^{1-p}n^{p-1}}{p-1}\int_0^{2\pi}\varphi'_*(t)\,dt \leqslant C\,\frac{L^{2-p} n^{p-1}}{p-1} \end{aligned} \end{equation*} \notag $$
due to the classical Hardy–Littlewood inequality. $\Box$

The condition of rectifiability is essential. In the general case there is no estimate of the form (1) with the dependence on the order of valency of the form $n^{p-1}$. However, Theorem 1 can also be extended to domains with fractal boundaries, and one can get estimates in terms of the (upper) Minkowski dimension $\operatorname{Mdim}(\gamma)\kern-1pt= \limsup_{\varepsilon\to 0}(\log N(\varepsilon)/\log(1/\varepsilon))$ (here $N(\varepsilon)$ is the minimum number of discs of radius $\varepsilon$ covering $\gamma$).

Theorem 2. Let $p \in (1,2]$, let $G$ be a bounded simply connected domain, and let $\gamma=\partial G$ and $\alpha=\operatorname{Mdim}(\gamma) \in [1,2]$. Then for any $\delta>0$ there exists a positive constant $C=C(G,p,\delta)$ such that the following inequality holds for every $n$-valent bounded function $R$ in $G$:

$$ \begin{equation*} \int_{G} |R'(w)|^p\, dA(w) \leqslant C n^{(p-2)/\alpha+1+\delta}\|R\|^p_{H^\infty(G)}. \end{equation*} \notag $$

As an application of Theorem 2, using the estimate for the dimension of quasicircles established in [11] we have obtained a similar result for domains with quasiconformal boundaries.


Bibliography

1. E. P. Dolzhenko, Mat. Sb., 69(111):4 (1966), 497–524  mathnet  mathscinet  zmath; English trabnsl. in Amer. Math. Soc. Transl. Ser. 2, 74, Amer. Math. Soc., Providence, RI, 1968, 61–90  crossref
2. V. V. Peller, Mat. Sb., 113(155):4(12) (1980), 538–581  mathnet  mathscinet  zmath; English transl. in Sb. Math., 41:4 (1982), 443–479  crossref
3. S. Semmes, Integral Equations Operator Theory, 7:2 (1984), 241–281  crossref  mathscinet  zmath
4. A. A. Pekarskii, Mat. Sb., 124(166):4(8) (1984), 571–588  mathnet  mathscinet  zmath; English transl. in Sb. Math., 52:2 (1985), 557–574  crossref
5. T. S. Mardvilko and A. A. Pekarskii, Mat. Sb., 202:9 (2011), 77–96  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 202:9 (2011), 1327–1346  crossref  adsnasa
6. V. I. Dančenko (Danchenko), Izv. Akad. Nauk SSSR Ser. Mat., 43:2 (1979), 277–293  mathnet  mathscinet  zmath; English transl. in Math. USSR Izv., 14:2 (1980), 257–273  crossref
7. V. I. Danchenko, Mat. Sb., 187:10 (1996), 33–52  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 187:10 (1996), 1443–1463  crossref
8. E. M. Dyn'kin, J. Approx. Theory, 91:3 (1997), 349–367  crossref  mathscinet  zmath
9. E. Dyn'kin, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 77–94  crossref  mathscinet  zmath
10. A. D. Baranov and I. R. Kayumov, Isv. Ross. Akad Nauk Ser. Mat., 86:5 (2022), 5–17  mathnet  crossref; English transl. in Izv. Math., 86:5 (2022), 839–851  crossref
11. S. Smirnov, Acta Math., 205:1 (2010), 189–197  crossref  mathscinet  zmath

Citation: A. D. Baranov, I. R. Kayumov, “Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries”, Russian Math. Surveys, 77:6 (2022), 1152–1154
Citation in format AMSBIB
\Bibitem{BarKay22}
\by A.~D.~Baranov, I.~R.~Kayumov
\paper Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries
\jour Russian Math. Surveys
\yr 2022
\vol 77
\issue 6
\pages 1152--1154
\mathnet{http://mi.mathnet.ru//eng/rm10086}
\crossref{https://doi.org/10.4213/rm10086e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461391}
\zmath{https://zbmath.org/?q=an:1521.30002}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022RuMaS..77.1152B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001018999000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85165360485}
Linking options:
  • https://www.mathnet.ru/eng/rm10086
  • https://doi.org/10.4213/rm10086e
  • https://www.mathnet.ru/eng/rm/v77/i6/p205
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:450
    Russian version PDF:24
    English version PDF:41
    Russian version HTML:167
    English version HTML:270
    References:52
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024