Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2023, Volume 78, Issue 1, Pages 165–202
DOI: https://doi.org/10.4213/rm10075e
(Mi rm10075)
 

Strong and weak associativity of weighted Sobolev spaces of the first order

V. D. Stepanovab, E. P. Ushakovabc

a Computer Centre of Far Eastern Branch of Russian Academy of Sciences
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
c V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow
References:
Abstract: A brief overview of the recent results on the problem of characterization of associative and double associative spaces of function classes, including both ideal and non-ideal structures, is presented. The latter include two-weighted Sobolev spaces of the first order on the positive semi- axis. It is shown that, in contrast to the notion of duality, associativity can be ‘strong’ or ‘weak’. In addition, double associative spaces are further divided into three types. In this context it is established that a weighted Sobolev space of functions with compact support possesses weak associative reflexivity, while the strong associative space of a weak associative space is trivial. Weighted classes of Cesàro and Copson type have similar properties; for these classes the problem us fully investigated, and their connections with Sobolev spaces with power weights are established. As an application, the problem of boundedness of the Hilbert transform from a weighted Sobolev space to a weighted Lebesgue space is considered.
Bibliography: 49 titles.
Keywords: function space; dual space; associative space; reflexivity; Sobolev space, Cesàro space, Copson space.
Funding agency Grant number
Russian Science Foundation 19-11-00087
The research presented in § § 2 and 3 was supported by the Russian Science Foundation under grant no. 19-11-00087; https://rscf.ru/project/19-11-00087/, and performed at Steklov Mathematical Institute of Russian Academy of Sciences.
Received: 20.07.2022
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 46B10, 46E30, 46E35
Language: English
Original paper language: Russian

Introduction

Put $I:=(0,\infty)$, and let $\mathfrak{M}(I)$ be the set of all Lebesgue measurable functions on $I$. Suppose $X\subset \mathfrak{M}(I)$ is a function space with a norm $\|\,{\cdot}\,\|_X$. Along with the notion of the dual (conjugate) space $X^\ast$ of all linear bounded functionals on $X$, the concept of the space $X'$ associative to $X$ and the problem of its description are well known. In a number of classical cases these spaces are isometrically isomorphic.

A space $X$ is said to be ideal if the fact that $|f|\leqslant|g|$ a.e. on $I$ and $g\in X$ implies that $f\in X$ and $\|f\|\leqslant\|g\|$. Put

$$ \begin{equation} \mathfrak{D}_X:=\biggl\{g\in \mathfrak{M}(I)\colon\int_I|fg|<\infty \text{ for all } f\in X\biggr\}. \end{equation} \tag{0.1} $$
For any $g\in\mathfrak{D}_X$ we define the functionals
$$ \begin{equation*} \mathbf{J}_{X}(g):= \sup_{0\ne f\in X}\frac{\int_I|fg|}{\|f\|_{X}}\quad\text{and}\quad {J}_{X}(g):=\sup_{0\ne f\in X}\frac{\bigl|\int_I fg\bigr|}{\|f\|_{X}} \end{equation*} \notag $$
and the associative spaces
$$ \begin{equation*} X'_{\rm s}:=\bigl\{g\in \mathfrak{M}(I)\colon\|g\|_{X'_{\rm s}}:= \mathbf{J}_X(g)<\infty\bigr\} \end{equation*} \notag $$
and
$$ \begin{equation*} X'_{\rm w}:=\bigl\{g\in \mathfrak{M}(I)\colon\|g\|_{X'_{\rm w}}:= {J}_X(g)<\infty\bigr\}, \end{equation*} \notag $$
which we say to be strong and weak, respectively. A standard problem for an ideal space $(X,\|\,{\cdot}\,\|_X)$ is the characterization of its strong associative (or Köthe dual) space (see [1], Chap. 1, § 2). Observe that $J_X(g)=\mathbf{J}_X(g)$ for any ideal space $X$ (see [1], Chap. 1, Lemma 2.8); in such a case $X'_{\rm s}=X'_{\rm w}$. For a non-ideal space $X$ the functionals $J_X(g)$ and $\mathbf{J}_X(g)$ can be different (see examples in [2]). The problem of characterization of double associative spaces is also natural. Since $X'_{\rm s}$ is ideal, we have $[X' _{\rm s}]'_{\rm s}=[X' _{\rm s}]'_{\rm w}$, and we add here the spaces $[X' _{\rm w}]'_{\rm s}$ and $[X' _{\rm w}]'_{\rm w}$.

In § 1 we give a complete description of strongly associative spaces to (ideal) weighted spaces of Cesàro and Copson type.

For $1\leqslant p\leqslant\infty$ we denote by $L^p(I)\subset \mathfrak{M}(I)$ the usual Lebesgue space with the norm $\|f\|_{L^p(I)}=\|f\|_p:=\biggl(\displaystyle\int_I|f|^p\biggr)^{1/p}$ (and the standard norm modification in the case $p=\infty$). The symbol ${\mathscr V}_p(I)$ denotes the corresponding set of weight functions (weights):

$$ \begin{equation*} {\mathscr V}_p(I):=\{v\in L^p_{\rm loc}(I)\colon v\geqslant 0, \|v\|_{L^1(I)}\ne 0\}. \end{equation*} \notag $$
Assume that $v_0,v_1\in {\mathscr V}_1(I)$. We denote by $W^1_{1,{\rm loc}}(I)$ the space of all functions $u\in L^1_{\rm loc}(I)$ whose distributional derivatives $Du$ belong to $L^1_{\rm loc}(I)$. We consider the weighted Sobolev space
$$ \begin{equation*} W^1_p(I):=\{u\in W^1_{1,{\rm loc}}(I)\colon\|u\|_{W^1_p(I)}<\infty\}, \end{equation*} \notag $$
where
$$ \begin{equation*} \|u\|_{W^1_p(I)}:=\|v_0 u\|_{L^p(I)}+\|v_1 Du\|_{L^p(I)}, \end{equation*} \notag $$
and the subspaces $ \overset{\circ\circ}{W} ^1_p(I)\subset \overset{\circ}{W} ^1_p(I)\subseteq W^1_p(I)$, the second of which is the closure in $W^1_p(I)$ of the first, that is, of the subspace $ \overset{\circ\circ}{W} ^1_p(I)$ of absolutely continuous functions subject to a number of additional requirements:
$$ \begin{equation*} \begin{aligned} \, \overset{\circ\circ}{W} ^1_p(I):=\Bigl\{f\in \operatorname{AC}(I)\colon &\limsup_{t\to 0+}|f(t)|=0, \ \operatorname{supp} f \text{ is compact in }[0,\infty), \\ &\text{and }\|f\|_{W^1_p(I)}<\infty\Bigr\}. \end{aligned} \end{equation*} \notag $$
In some cases the set $\mathfrak{D}_{ \overset{\circ\circ}{W} ^1_p(I)}$ is defined using some additional conditions (see § 2).

Let $X\in\{ \overset{\circ\circ}{W} ^1_p(I), \overset{\circ}{W} ^1_p(I),W^1_p(I)\}$. A complete characterization of the associative spaces $X'_{\rm s}$ and $X'_{\rm w}$ on an arbitrary interval, not necessarily on $I$, was obtained in [2], §§ 5 and 6. In particular, it was established for any weighted Sobolev space $X\in\{ \overset{\circ}{W} ^1_p(I),W^1_p(I)\}$ that

$$ \begin{equation*} J_X(g)<\infty\ \ \Longleftrightarrow\ \ \mathbf{J}_X(g)<\infty \end{equation*} \notag $$
(see [3], Theorems 2.5 and 2.6), and examples of spaces $ \overset{\circ\circ}{W} ^1_p(I)$ and functions $g\in X$ were given for which $J_X(g)<\infty$ and $\mathbf{J}_X(g)=\infty$. In addition, it was found out that for power weight functions $v_0$ and $v_1$ the spaces $X'_{\rm s}$ and $X'_{\rm w}$ coincide with the strong and weak spaces of Cesàro and Copson type, respectively, while $X= \overset{\circ\circ}{W} ^1_p(I)$ is weakly reflexive $X=[X'_{\rm w}]'_{\rm w}$. A complete analysis of this problem, including a characterization of the double associative spaces $[X'_{\rm s}]'_{\rm s}$, $[X'_{\rm w}]'_{\rm s}$, and $[X'_{\rm w}]'_{\rm w}$ to Sobolev spaces with power weights and spaces of Cesàro and Copson type in the role of $X$, is carried out in § 2.

Section 3 contains a new result, the proof of the weak associative reflexivity of the Sobolev space $X= \overset{\circ\circ}{W} ^1_p(I)$ with arbitrary weights in the case when $1<p<\infty$. In addition, we show that $[X'_{\rm w}]'_{\rm s}=\{0\}$. A characterization of $[X'_{\rm s}]'_{\rm s}=[X'_{\rm s}]'_{\rm w}$ remains open for now.

The main motivation for the study of weak associative spaces is the opportunity to apply the duality principle, which makes it possible to reduce the boundedness problem for an indefinite linear operator, say, from a Sobolev space to a Lebesgue space, to some better studied cases by means of the dual operator. In § 4 we illustrate this method using the Hilbert transform for example.

More introductory information is provided at the beginning of each section.

Throughout the work, uncertainties of the form $0\cdot\infty$ are assumed to be equal to 0. A relation $A\lesssim B$ means that $A\leqslant cB$ with some constant $c$ depending only on the parameter $p$; the notation $A\approx B$ is equivalent to $A\lesssim B \lesssim A$. The symbols $\mathbb{N}$ and $\mathbb{Z}$ denote the sets of natural numbers and integers, respectively. The characteristic function (indicator) of a set $E$ is denoted by $\chi_E$. If $1<p<\infty$, then $p':={p}/(p-1)$.

1. Ideal Cesàro and Copson spaces

The following notation will be used in what follows:

$$ \begin{equation} \mathfrak{M}^+:=\{f\in \mathfrak{M}(I)\colon f\geqslant 0\}, \end{equation} \tag{1.1} $$
$\mathfrak{M}^{\downarrow}\subset \mathfrak{M}^{+}$ is the subset of all non-increasing functions, and $\mathfrak{M}^{\uparrow}\subset \mathfrak{M}^{+}$ is the subset of all non-decreasing functions. Let $0<p\leqslant\infty$, and let $u\in \mathfrak{M}^+$ and $v\in \mathfrak{M}^+$ be fixed weight functions. We consider the weighted spaces $\operatorname{Ces}_{p,u,v}$ and $\operatorname{Cop}_{p,u,v}$ of the following form
$$ \begin{equation*} \operatorname{Ces}_{p,u,v}:=\biggl\{f\in\mathfrak{M}(I)\colon \|f\|_{\operatorname{Ces}_{p,u,v}}:=\biggl(\int_0^\infty \biggl(\,\int_0^t|f|u\biggr)^pv(t)\,dt\biggr)^{1/p}<\infty\biggr\} \end{equation*} \notag $$
for $0<p<\infty$, and
$$ \begin{equation*} \operatorname{Ces}_{\infty,u,v}:=\biggl\{f\in\mathfrak{M}(I)\colon \|f\|_{\operatorname{Ces}_{\infty,u,v}}:= \operatorname*{ess\,sup}_{t\geqslant 0}v(t)\int_0^t|f|u < \infty\biggr\} \end{equation*} \notag $$
for $p=\infty$; analogously,
$$ \begin{equation*} \operatorname{Cop}_{p,u,v}:=\biggl\{f\in\mathfrak{M}(I)\colon \|f\|_{\operatorname{Ces}_{p,u,v}}:=\biggl(\,\int_0^\infty \biggl(\,\int_t^\infty|f|u\biggr)^pv(t)\,dt\biggr)^{1/p}<\infty\biggr\} \end{equation*} \notag $$
if $0<p<\infty$, and
$$ \begin{equation*} \operatorname{Cop}_{\infty,u,v}:=\biggl\{f\in\mathfrak{M}(I)\colon \|f\|_{\operatorname{Ces}_{\infty,u,v}}:= \operatorname*{ess\,sup}_{t\geqslant 0}v(t) \int_t^\infty|f|u <\infty\biggr\} \end{equation*} \notag $$
for $p=\infty$. If $1\leqslant p<\infty$, then for $u\equiv 1$ and $v(t)=t^{-p}$ the space $\operatorname{Ces}_{p,u,v}$ is called the Cesàro space, while for $u(s)=s^{-1}$ and $v(t)\equiv 1$ the space $\operatorname{Cop}_{p,u,v}$ is named the Copson space (see, for instance, [4] and [5], and see [6] for the history and bibliography). The weighted Cesàro and Copson spaces are complete ideal (quasi)normed spaces. Thus, if $X\in\{\operatorname{Ces}_{p,u,v}, \operatorname{Cop}_{p,u,v}\}$, then $X'_{\rm s}=X'_{\rm w}$, and the problem of characterization of the spaces associative to these spaces is reduced to a two-sided estimate for the functional $\mathbf{J}_{X}(g)$. For the classical Cesàro spaces $\operatorname{Ces}_p:=\operatorname{Ces}_{p,1,t^{-p}}$, ($1<p<\infty$, $u\equiv 1$, $v(t)=t^{-p}$), and also for their discrete analogues, the above problem was stated in 1968 and has been studied by many authors since 1974, so that the results improved gradually and ever more general formulations were considered (see [7]). The completeness of $\operatorname{Ces}_p$ was proved in [8]. As concerns $\operatorname{Ces}_p$, the norm in its associative space has been found (see, for instance, [4] and [6], Theorem 4.1):
$$ \begin{equation} \|g\|_{[\operatorname{Ces}_p]'}\approx \biggl(\,\int_I(\|g\chi_{[x,\infty)}\|_{L_\infty})^{p'}\,dx\biggr)^{1/p'}. \end{equation} \tag{1.2} $$
The one-weighted case $\operatorname{Ces}_{p,1,v}$, $1<p<\infty$, $u\equiv 1$, was considered in [9], where a rather bulky description was given. For $\operatorname{Cop}_{p,1,v}$, $1<p<\infty$, the problem was solved in [10], Corollary 3.8, and for $\operatorname{Cop}_{p,x^{-1},v}$, $0<p\leqslant\infty$, in [11], Theorem 2.1. In this section we review a generalization of formula (1.2) and the results from [10] and [11] mentioned above to the case of arbitrary weighted Cesàro and Copson spaces. The main results in this section are taken from [12].

For $g\in\mathfrak{M}(I)$ set

$$ \begin{equation*} g^\downarrow(t):=\operatorname*{ess\,sup}_{x\geqslant t}|g(x)|\quad\text{and}\quad g^\uparrow(t):=\operatorname*{ess\,sup}_{x\leqslant t}|g(x)|. \end{equation*} \notag $$
Let
$$ \begin{equation*} Kf(x)=\int_I k(x,t)f(t)\,dt \end{equation*} \notag $$
be an integral operator with kernel $k(x,t)\geqslant 0$. Let $(X,\|\,{\cdot}\,\|_X)$ be a linear space of measurable functions on $I$ with monotone (quasi)norm, that is, $\|f\|_X\leqslant \|g\|_X$ if $0\leqslant f\leqslant g$. The following two assertions were obtained in [10] (Theorem 3.3 and Corollary 3.4).

(a) Let the kernel $k(x,t)$ be non-increasing in $t$ for every fixed $x$. Then

$$ \begin{equation*} \sup_{f\in\mathfrak{M}^+}\frac{\int_I fu}{\|Kf\|_X}= \sup_{f\in\mathfrak{M}^+}\frac{\int_I fu^\downarrow}{\|Kf\|_X}\,. \end{equation*} \notag $$

(b) Let $k(x,t)$ be non-decreasing in $t$ for every fixed $x$. Then

$$ \begin{equation*} \sup_{f\in\mathfrak{M}^+}\frac{\int_I fu}{\|Kf\|_X}= \sup_{f\in\mathfrak{M}^+}\frac{\int_I fu^\uparrow}{\|Kf\|_X}\,. \end{equation*} \notag $$

In addition, we will need results of ‘Sawyer’s principle of duality’ type (see [13], [14], § 2.1, [15], Proposition 1, and [16], Theorems 2.1 and 2.3–2.5). For $v\in\mathfrak{M}^+$ we denote

$$ \begin{equation*} V(t):=\int_0^t v\quad\text{and}\quad V_*(t):=\int_t^\infty v. \end{equation*} \notag $$
Analogously, if $\lambda$ is a Borel measure on $I$ then
$$ \begin{equation*} \Lambda(t):=\int_{[0,t]} d\lambda\quad\text{and}\quad \Lambda_*(t):=\int_{[t,\infty)} d\lambda. \end{equation*} \notag $$
Let $v\in\mathfrak{M}^+$ and $\lambda$ be a Borel measure on $I$. Then the following hold:

(a$_1$) for $0<p\leqslant 1$

$$ \begin{equation*} \sup_{F\in\mathfrak{M}^\downarrow} \frac{\int_{I}F\,d\lambda}{\bigl(\int_{I}F_{\vphantom{1}}^p v\bigr)^{1/p}}= \sup_{t\in I}\frac{\Lambda(t)}{V^{1/p}(t)}\,; \end{equation*} \notag $$

(a$_2$) for $1<p<\infty$

$$ \begin{equation*} \sup_{F\in\mathfrak{M}^\downarrow} \frac{\int_{I}F\,d\lambda}{(\int_{I}F_{\vphantom{1}}^p v)^{1/p}}\approx \biggl(\,\int_{I}\biggl(\frac{\Lambda(t)}{V(t)}\biggr)^{p'} v(t)\,dt\biggr)^{1/p'}+\frac{\Lambda(\infty)}{V^{1/p}(\infty)}\,; \end{equation*} \notag $$

(b$_1$) for $0<p\leqslant 1$

$$ \begin{equation*} \sup_{F\in\mathfrak{M}^\uparrow} \frac{\int_{I}F\,d\lambda}{(\int_{I}F_{\vphantom{1}}^p v)^{1/p}}= \sup_{t\in I}\frac{\Lambda_*(t)}{V_*^{1/p}(t)}\,; \end{equation*} \notag $$

(b$_2$) for $1<p<\infty$

$$ \begin{equation*} \sup_{F\in\mathfrak{M}^\uparrow} \frac{\int_{I}F\,d\lambda}{(\int_{I}F{\vphantom{1}}^p v)^{1/p}}\approx \biggl(\,\int_{I}\biggl(\frac{\Lambda_*(t)}{V_*(t)}\biggr)^{p'} v(t)\,dt\biggr)^{1/p'}+\frac{\Lambda_*(0)}{V_*^{1/p}(0)}\,; \end{equation*} \notag $$

(a$_3$) for $p=\infty$

$$ \begin{equation*} \sup_{F\in\mathfrak{M}^\downarrow}\frac{\int_{I}F\,d\lambda}{\|Fv\|_\infty}= \int_{I}\frac{d\lambda(x)}{v^\uparrow(x)}\,; \end{equation*} \notag $$

(b$_3$) for $p=\infty$

$$ \begin{equation*} \sup_{F\in\mathfrak{M}^\uparrow}\frac{\int_{I}Fd\lambda}{\|Fv\|_\infty}= \int_{I}\frac{d\lambda(x)}{v^\downarrow(x)}\,. \end{equation*} \notag $$

Using relations (a), (b), (a$_1$)–(a$_3$), and (b$_1$)–(b$_3$) we prove the theorem below.

Theorem 1.1. Let $u, v\in\mathfrak{M}^+$. If $X=\operatorname{Ces}_{p,u,v}$ and $g\in\mathfrak{D}_X$, then the following are true:

$\rm {(c_1)}$ for $0<p\leqslant 1$

$$ \begin{equation*} \|g\|_{X'_{\rm s}}=\biggl\|\frac{g}{uV_*^{1/p}}\biggr\|_\infty; \end{equation*} \notag $$

$\rm {(c_2)}$ for $1<p<\infty$

$$ \begin{equation*} \|g\|_{X'_{\rm s}}\approx\biggl(\,\int_{I} \biggl(\frac{g_u^\downarrow(t)}{V_*(t)}\biggr)^{p'} v(t)\,dt\biggr)^{1/p'}+ \frac{g_u^\downarrow(0)}{V_*^{1/p}(0)},\quad\textit{where}\quad g_u^\downarrow:=\biggl(\frac{|g|}{u}\biggr)^\downarrow; \end{equation*} \notag $$

$\rm {(c_3)}$ for $p=\infty$

$$ \begin{equation*} \|g\|_{X'_{\rm s}}=\int_{I}\frac{dg_u^\downarrow}{v^\downarrow}. \end{equation*} \notag $$

In the case $X=\operatorname{Cop}_{p,u,v}$ the following assertions hold:

$\rm {(d_1)}$ for $0<p\leqslant 1$

$$ \begin{equation*} \|g\|_{X'_{\rm s}}=\biggl\|\frac{g}{uV^{1/p}}\biggr\|_\infty; \end{equation*} \notag $$

$\rm {(d_2)}$ for $1<p<\infty$

$$ \begin{equation*} \|g\|_{X'_{\rm s}}\approx\biggl(\,\int_{I} \biggl(\frac{g_u^\uparrow(t)}{V(t)}\biggr)^{p'} v(t)\,dt\biggr)^{1/p'}+ \frac{g_u^\uparrow(\infty)}{V^{1/p}(\infty)},\quad\textit{where}\quad g_u^\uparrow:=\biggl(\frac{|g|}{u}\biggr)^\uparrow; \end{equation*} \notag $$

$\rm {(d_3)}$ for $p=\infty$

$$ \begin{equation*} \|g\|_{X'_{\rm s}}=\int_{I}\frac{dg_u^\uparrow}{v^\uparrow}\,. \end{equation*} \notag $$

Example 1.1. Let $0<p<\infty$, and let $\operatorname{Ces}_p:=\operatorname{Ces}_{p,1,t^{-p}}$ and $\operatorname{Cop}_p:=\operatorname{Cop}_{p,s^{-1},1}$ be the Cesàro and Copson spaces, respectively. Also let

$$ \begin{equation*} \|f\|_{\operatorname{Ces}_\infty}:= \sup_{t\geqslant 0}\frac{1}{t}\int_0^t|f|\quad\text{and}\quad \|f\|_{\operatorname{Cop}_\infty}:=\int_I\frac{|f(s)|\,ds}{s}\,. \end{equation*} \notag $$
Then from Theorem 1.1, for $X=\operatorname{Ces}_p$ we obtain
$$ \begin{equation*} \begin{alignedat}{2} X'_{\rm s}&=\{0\},&&\qquad 0<p\leqslant 1, \\ \|g\|_{X'_{\rm s}}&\approx\|g^\downarrow\|_{p'},&&\qquad 1<p<\infty, \\ \|g\|_{X'_{\rm s}}&=\|g^\downarrow\|_1,&&\qquad p=\infty. \end{alignedat} \end{equation*} \notag $$
Observe that, according to (c$_1$), the non-triviality condition for $[\operatorname{Ces}_{p,u,v}]'_{\rm s}$ in the case when $0<p\leqslant 1$ is that the function $uV_*^{1/p}$ is finite (this holds, for instance, if $u\equiv 1$, $v(t)=t^{-q}$, and $q>1$). It is known that for $1<p<\infty$ the space $X=\operatorname{Ces}_p$ is not reflexive in the sense of functionals, $X^{**}\ne X$ (see [17], Theorem 1, (g)). However, there is associative reflexivity. Indeed, using (a$_2$), for $1<p<\infty$ we have
$$ \begin{equation*} {J}_{X'_{\rm s}}(f):=\sup_{g\in X'_{\rm s}} \frac{\int_I |fg|}{\|g\|_{X'_{\rm s}}}\approx \sup_{g\in X'_{\rm s}}\frac{\int_I |fg|}{\|g^\downarrow\|_{p'}}\leqslant \sup_{g\in X'_{\rm s}}\frac{\int_I |f|g^\downarrow}{\|g^\downarrow\|_{p'}} \leqslant\sup_{g\in \mathfrak{M}^\downarrow}\frac{\int_I |f|g}{\|g\|_{p'}} \approx\|f\|_{\operatorname{Ces}_p} \end{equation*} \notag $$
and
$$ \begin{equation*} \sup_{g\in X'_{\rm s}}\frac{\int_I |fg|}{\|g^\downarrow\|_{p'}}\geqslant \sup_{g\in \mathfrak{M}^\downarrow}\frac{\int_I |f|g}{\|g\|_{p'}} \approx\|f\|_{\operatorname{Ces}_p}. \end{equation*} \notag $$
Analogously, by (a$_1$), for $p=\infty$ we obtain
$$ \begin{equation*} \sup_{g\in X'_{\rm s}}\frac{\int_I |fg|}{\|g\|_{X'_{\rm s}}} =\sup_{g\in X'}\frac{\int_I |fg|}{\|g^\downarrow\|_{1}}\leqslant \sup_{g\in \mathfrak{M}^\downarrow}\frac{\int_I |f|g}{\|g\|_{1}} =\|f\|_{\operatorname{Ces}_\infty} \end{equation*} \notag $$
and
$$ \begin{equation*} \sup_{g\in X'_{\rm s}}\frac{\int_I |fg|}{\|g^\downarrow\|_{1}} \geqslant\sup_{h\in \mathfrak{M}^+}\frac{\int_0^\infty |f(s)|(\int_s^\infty h)\,ds}{\|sh(s)\|_{1}} =\|f\|_{\operatorname{Ces}_\infty}. \end{equation*} \notag $$
Thus,
$$ \begin{equation} [[\operatorname{Ces}_p]'_{\rm s}]'_{\rm s}=\operatorname{Ces}_p,\qquad 1<p\leqslant\infty. \end{equation} \tag{1.3} $$
Let
$$ \begin{equation*} L^\downarrow_p:=\{f\in\mathfrak{M}^\downarrow\colon \|f\|_p <\infty\} \end{equation*} \notag $$
be the cone of all non-increasing functions in $L_p$. Then (see (a$_2$))
$$ \begin{equation*} \|g\|_{[L^\downarrow_{p'}]'}:=\sup_{f\in \mathfrak{M}^\downarrow} \frac{\int_I f|g|}{\|f\|_{p'}}\approx\|g\|_{\operatorname{Ces}_{p}},\qquad 1<p<\infty, \end{equation*} \notag $$
and
$$ \begin{equation*} \|g\|_{[L^\downarrow_{1}]'}=\|g\|_{\operatorname{Ces}_{\infty}}. \end{equation*} \notag $$
Therefore,
$$ \begin{equation} [[L^\downarrow_{p'}]{']'_{\rm s}}=[\operatorname{Ces}_p]'_{\rm s},\qquad 1<p\leqslant\infty, \end{equation} \tag{1.4} $$
and it follows from the results in [18] and [19] that $[\operatorname{Ces}_p]'_{\rm s}$ is the minimal Banach space containing the cone $L^\downarrow_{p'}$.

If $X=\operatorname{Cop}_p$ then

$$ \begin{equation*} \begin{alignedat}{2} \|g\|_{X'_{\rm s}}&=\operatorname*{ess\,sup}_{s\geqslant 0} s^{1-1/p}|g(s)|&&\quad\text{for }\ 0<p\leqslant 1, \\ \|g\|_{X'_{\rm s}}&\approx\biggl(\,\int_I \biggl(\frac{g_u^\uparrow(t)}{t}\biggr)^{p'}\,dt\biggr)^{1/p'} &&\quad\text{for } 1<p<\infty \ (\text{here } g_u^\uparrow(t)= \operatorname*{ess\,sup}_{0\leqslant s\leqslant t}s|g(s)|), \\ \|g\|_{X'_{\rm s}}&=\|sg(s)\|_\infty &&\quad\text{for } p=\infty. \end{alignedat} \end{equation*} \notag $$

By analogy with (1.3) one can prove that

$$ \begin{equation*} [[\operatorname{Cop}_p]{'_{\rm s}]'_{\rm s}}=\operatorname{Cop}_p,\qquad 1\leqslant p\leqslant\infty. \end{equation*} \notag $$
If $Y:=\operatorname{Cop}_{p,1,1}$, then there is an analogue of (1.4):
$$ \begin{equation*} [[L^\uparrow_{p'}]{']'_{\rm s}}=Y'_{\rm s},\qquad 1<p<\infty. \end{equation*} \notag $$

It is known ([4] and [6], Theorem 3.2, (a)) that $\operatorname{Ces}_p=\operatorname{Cop}_p$ for $1<p<\infty$, furthermore, $\|f\|_{\operatorname{Ces}_p}\approx \|f\|_{\operatorname{Cop}_p}$. From this and the above example an interesting connection between the norms of the majorants $g^\downarrow$ and $g^\uparrow$ follows:

$$ \begin{equation*} \|g^\downarrow\|_{p}\approx\biggl(\,\int_I \biggl(\frac{[sg(s)]^\uparrow(t)}{t}\biggr)^{p} \,dt\biggr)^{1/p},\qquad 1<p<\infty. \end{equation*} \notag $$

Example 1.2. Let $1<p<\infty$ and $u\in \mathfrak{M}^+$. A weighted Hilbert space $\mathcal{H}_{p,u}$ consists of all functions with finite norm

$$ \begin{equation*} \|f\|_{\mathcal{H}_{p,u}}:=\biggl(\,\int_I\biggl(\,\int_I \frac{|f(y)|u(y)}{x+y}\,dy \biggr)^p\,dx\biggr)^{1/p} \end{equation*} \notag $$
(see [4], § 21). Then
$$ \begin{equation*} \|f\|_{\mathcal{H}_{p,u}}\approx \|f\|_{\operatorname{Ces}_{p,u,x^{-p}}}, \end{equation*} \notag $$
and (c$_2$) implies that
$$ \begin{equation*} \|g\|_{[\mathcal{H}_{p,u}]'_s}\approx\|g_u^\downarrow\|_{p'}. \end{equation*} \notag $$

2. Non-ideal spaces of Cesàro and Copson type with power weights. A connection with Sobolev spaces

Let $p\in(1,\infty)$ and $\beta>1/p$. We define Cesàro-type spaces as the spaces

$$ \begin{equation*} \operatorname{Ces}_{p,\beta}(I):=\{f\in\mathfrak{M}(I)\colon \|f\|_{\operatorname{Ces}_{p,\beta}(I)}<\infty\} \end{equation*} \notag $$
of functions with finite norm
$$ \begin{equation*} \|f\|_{\operatorname{Ces}_{p,\beta}(I)}:= \biggl(\,\int_0^\infty\biggl(\frac{1}{x^\beta} \int_0^x|f|\biggr)^p\,dx\biggr)^{1/p}. \end{equation*} \notag $$

Set

$$ \begin{equation*} L^1_{\rm loc}([0,\infty)):=\biggl\{f\in\mathfrak{M}(I)\colon \int_0^b |f|<\infty \text{ for all } b\in I\biggr\}. \end{equation*} \notag $$
Along with $\operatorname{Ces}_{p,\beta}(I)$, we consider non-ideal spaces of Cesàro type
$$ \begin{equation*} {\mathscr C}\!es_{p,\beta}(I):=\{f\in L^1_{\rm loc}([0,\infty))\colon \|f\|_{{\mathscr C}\!es_{p,\beta}(I)}<\infty\} \end{equation*} \notag $$
with norm
$$ \begin{equation*} \|f\|_{{\mathscr C}\!es_{p,\beta}(I)}:=\biggl(\,\int_0^\infty \biggl|\frac{1}{x^\beta}\int_0^xf\biggr|^p\,dx\biggr)^{1/p}. \end{equation*} \notag $$
It is obvious that $L^p_{x^{1-\beta}}(I)\subset \operatorname{Ces}_{p,\beta}(I)\subset{\mathscr C}\!es_{p,\beta}(I)$, where the first embedding follows from Hardy’s inequality (see [20], Theorem 330), and the weighted Lebesgue space $L^p_v(I)$ is defined in terms of the norm
$$ \begin{equation*} \|f\|_{L^p_v(I)}:=\biggl(\,\int_I|v(x)f(x)|^p\,dx\biggr)^{1/p}. \end{equation*} \notag $$
Furthermore, for $\gamma<{1}/{p}$ we consider a Copson-type function space:
$$ \begin{equation*} \operatorname{Cop}_{p,\gamma}(I):=\{g\in\mathfrak{M}(I)\colon \|g\|_{\operatorname{Cop}_{p,\gamma}(I)}<\infty\}, \end{equation*} \notag $$
where
$$ \begin{equation*} \|g\|_{\operatorname{Cop}_{p,\gamma}(I)}:=\biggl(\,\int_0^\infty \biggl(\frac{1}{x^\gamma}\int_x^\infty|g|\biggr)^p\,dx\biggr)^{1/p}. \end{equation*} \notag $$
We put
$$ \begin{equation*} L^1_{{\rm loc}}((0,\infty]):=\biggl\{f\in\mathfrak{M}(I)\colon \int_t^\infty |f|<\infty \text{ for all } t\in I\biggr\} \end{equation*} \notag $$
and, by analogy with Cesàro spaces, define a non-ideal space of Copson type of the form
$$ \begin{equation*} {\mathscr C}\!op_{p,\gamma}(I):=\{g\in L^1_{{\rm loc}}((0,\infty])\colon \|g\|_{{\mathscr C}\!op_{p,\gamma}(I)}<\infty\}, \end{equation*} \notag $$
where
$$ \begin{equation*} \|g\|_{{\mathscr C}\!op_{p,\gamma}(I)}:=\biggl(\,\int_0^\infty \biggl|\frac{1}{x^\gamma}\int_x^\infty g\biggr|^p\,dx\biggr)^{1/p}. \end{equation*} \notag $$
It is easy to see that $L^p_{x^{1-\gamma}}(I)\subset \operatorname{Cop}_{p,\gamma}(I)\subset{\mathscr C}\!op_{p,\gamma}(I)$, where the first embedding follows from Hardy’s inequality again (see [20], Theorem 330). The special case of Copson-type spaces for $\gamma=0$ and $p=2$ was considered in [3], § 5.

Our main goal in this part of the paper is to characterize the strong and weak associative spaces of function spaces of Cesàro and Copson type. The first problem for $\operatorname{Ces}_{p,\beta}(I)$, $\beta=1$, has been solved — see, for example, [6], Theorem 4.1, and also [9] and [7]. In the general case, using Theorem 1.1 we find the norms

$$ \begin{equation*} \|g\|_{[\operatorname{Ces}_{p,\beta}(I)]'_{\rm s}}\approx \biggl(\,\int_I( x^{\beta-1}g^\downarrow(x))^{p'}\,dx\biggr)^{1/p'} \end{equation*} \notag $$
and
$$ \begin{equation*} \|g\|_{[\operatorname{Cop}_{p,\gamma}(I)]'_{\rm s}}\approx \biggl(\,\int_I(x^{\gamma-1}g^\uparrow(x))^{p'}\,dx\biggr)^{1/p'} \end{equation*} \notag $$
of the strongly associative spaces of $\operatorname{Ces}_{p,\beta}(I)$ and $\operatorname{Cop}_{p,\gamma}(I)$, and their strong reflexivity is established.

In § 2.1 we establish a close connection of Cesàro- and Copson-type spaces with Sobolev weight classes of the first order on the semi-axis. Namely, we show that spaces of Cesàro and Copson type are associative to Sobolev spaces with power weights.

The main result is contained in § 2.2, where a characterization of $X'_{\rm s}$ and $X'_{\rm w}$ is presented in the case when $X$ is a weak Cesàro- or Copson-type space. We demonstrate there that $X'_{\rm s}=\{0\}$ and $X'_{\rm w}$ coincides with the Sobolev class for which $X={\mathscr C}\!es_{p,\beta}(I)$ or $X={\mathscr C}\!op_{p,\gamma}(I)$ is the associative space, that is, we establish the weak reflexivity of weak spaces of Cesàro and Copson type.

The case of Cesàro spaces $\operatorname{Ces}_{p}(I)$ and ${\mathscr C}\!es_{p}(I)$ was recently studied by Prokhorov [21] (also see [22]). The main results in this section are taken from [23].

Observe that ${\mathscr C}\!es_{p,\beta}(I)$ and ${\mathscr C}\!op_{p,\beta}(I)$ are incomplete normed spaces.

Example 2.1. For $\varepsilon\in(0,{1}/{p})$ put

$$ \begin{equation*} f_\varepsilon(x)=\frac{\sin x}{x^{1+\varepsilon}}\,. \end{equation*} \notag $$
Then $\|f_\varepsilon\|_{{\mathscr C}\!op_{p,\gamma}(I)}<\infty$, but $\|f_\varepsilon\|_{\operatorname{Cop}_{p,\gamma}(I)}=\infty$, that is, $f_\varepsilon\in {\mathscr C}\!op_{p,\gamma}(I)\setminus \operatorname{Cop}_{p,\gamma}(I)$.

At the same time, the following assertions hold.

Lemma 2.1. (a) $\operatorname{Cop}_{p,\gamma}(I)$ is dense in ${\mathscr C}\!op_{p,\gamma}(I)$.

(b) $\operatorname{Ces}_{p,\beta}(I)$ is dense in ${\mathscr C}\!es_{p,\beta}(I)$.

2.1. A characterization of Cesàro- and Copson-type spaces as the ones associative to Sobolev spaces

Remark 2.1. For $0<\delta<1<\lambda<\infty$

$$ \begin{equation*} \|f\|_{{\mathscr C}\!es_{p,\beta}(I)}\approx\biggl(\,\int_0^\infty \biggl(\frac{1}{x^\beta}\biggl|\int_{\delta x}^{x}f\biggr|\,\biggr)^p\, dx\biggr)^{1/p}\approx\biggl(\,\int_0^\infty\biggl(\frac{1}{x^\beta} \biggl|\int_x^{\lambda x}f\biggr|\,\biggr)^p\,dx\biggr)^{1/p}. \end{equation*} \notag $$
Analogously,
$$ \begin{equation*} \|f\|_{{\mathscr C}\!op_{p,\gamma}(I)}\approx\biggl(\,\int_0^\infty \biggl(\frac{1}{x^\gamma}\biggl|\int_{\delta x}^{x}f\biggr|\,\biggr)^p\, dx\biggr)^{1/p}\approx\biggl(\,\int_0^\infty\biggl(\frac{1}{x^\gamma} \biggl|\int_x^{\lambda x}f\biggr|\,\biggr)^p\,dx\biggr)^{1/p}. \end{equation*} \notag $$
The same relations hold for the norms in $\operatorname{Ces}_{p,\beta}(I)$ and $\operatorname{Cop}_{p,\gamma}(I)$.

It turns out that Sobolev classes with certain specially chosen weights $v_0$ and $v_1$ are closely connected with Cesàro and Copson function spaces. We start with Cesàro spaces, first of strong type (Theorem 2.1) and then of weak type (Theorem 2.2).

Theorem 2.1. Let $1<p<\infty$ and $\beta=\alpha+1>1/p'$, and let $W_{p,\beta}^1(I)$ be the Sobolev space with weights

$$ \begin{equation} v_0(x)=\eta_p x^\alpha,\quad v_1(x)=x^\beta, \end{equation} \tag{2.1} $$
where $\eta_p$ is some coefficient. Then
$$ \begin{equation*} \mathbf{J}_{W_{p,\beta}^1(I)}(g)\approx \|g\|_{\operatorname{Ces}_{p',\beta}(I)}. \end{equation*} \notag $$

Corollary 2.1. For $X\in\{ \overset{\circ\circ}{W} ^1_{p,\beta}(I), \overset{\circ}{W} ^1_{p,\beta}(I),W^1_{p,\beta}(I)\}$ it follows from Theorem 2.1 above and Corollary 6.1 in [2] that

$$ \begin{equation*} X_{\rm s}'=\operatorname{Ces}_{p',\beta}(I) \end{equation*} \notag $$
and $\|g\|_{X_{\rm s}'}=\mathbf{J}_{W_{p,\beta}^1(I)}(g) \approx\|g\|_{\operatorname{Ces}_{p',\beta}(I)}$ for $g\in \operatorname{Ces}_{p',\beta}(I)$.

Remark 2.2. Let

$$ \begin{equation*} L^\downarrow_{p,\beta}(I):=\biggl\{f\in \mathfrak{M}^\downarrow\colon \|f\|_{L^p_{x^{\beta-1}}(I)}= \biggl(\,\int_I\bigl(x^{\beta-1}f(x)\bigr)^{p}\,dx\biggr)^{1/p} <\infty\biggr\}. \end{equation*} \notag $$
It is known (see [14], Lemma 2.3) that
$$ \begin{equation*} \|g\|_{[L^\downarrow_{p,\beta}]'}:=\sup_{f\in \mathfrak{M}^\downarrow(I)} \frac{\int_I f|g|}{\|f\|_{L^p_{x^{\beta-1}}(I)}}\approx \|g\|_{\operatorname{Ces}_{p',\beta}(I)}. \end{equation*} \notag $$
Therefore, if $X\in\{ \overset{\circ\circ}{W} ^1_{p,\beta}(I), \overset{\circ}{W} ^1_{p,\beta}(I),W^1_{p,\beta}(I)\}$, then
$$ \begin{equation} (X_{\rm s}')'_{\rm s}=[L^\downarrow_{p,\beta}]'':= \biggl\{g\in \mathfrak{M}(I)\colon\sup_{f\in [L^\downarrow_{p,\beta}(I)]'} \frac{\int_I f|g|}{\|f\|_{[L^\downarrow_{p,\beta}(I)]'}}<\infty\biggr\}, \end{equation} \tag{2.2} $$
that is, the double strongly associative space of a Sobolev space coincides with the optimal (minimal) Banach function space containing the cone $L^\downarrow_{p,\beta}$ (see [18] and [19]).

Theorem 2.2. Let $1<p<\infty$, $\beta=\alpha+1>1/p'$, and let $v_0$ and $ v_1$ be weights defined by (2.1). Then

$$ \begin{equation*} J_{ \overset{\circ\circ}{W} ^1_{p,\beta}(I)}(g)\approx \|g\|_{{\mathscr C}\!es_{p,\beta}(I)}. \end{equation*} \notag $$

Corollary 2.2. For $X= \overset{\circ\circ}{W} ^1_{p,\beta}(I)$

$$ \begin{equation} X'_{\rm w}=\Bigl\{g\in L^1_{\rm loc}([0,\infty))\colon J_{ \overset{\circ\circ}{W} ^1_{p,\beta}(I)}(g)<\infty\Bigr\}={\mathscr C}\!es_{p',\beta}(I) \end{equation} \tag{2.3} $$
and $\|g\|_{X'_{\rm w}}=J_{ \overset{\circ\circ}{W} ^1_{p,\beta}(I)}(g)\approx \|g\|_{{\mathscr C}\!es_{p',\beta}(I)}$ for $g\in {\mathscr C}\!es_{p',\beta}(I)$.

Similar relations hold between Sobolev spaces and Copson-type spaces.

Theorem 2.3. Let $1<p<\infty$ and $\gamma=\sigma+1<1/p'$, and let $W_{p,\gamma}^1(I)$ be the Sobolev space with weights

$$ \begin{equation} v_0(x)=\theta_p x^\sigma,\quad v_1(x)=x^\gamma. \end{equation} \tag{2.4} $$
Then
$$ \begin{equation*} \mathbf{J}_{W_{p,\gamma}^1(I)}(g)\approx \|g\|_{\operatorname{Cop}_{p',\gamma}(I)}. \end{equation*} \notag $$

Corollary 2.3. For $X\in\{ \overset{\circ\circ}{W} ^1_{p,\gamma}(I), \overset{\circ}{W} ^1_{p,\gamma}(I),W^1_{p,\gamma}(I)\}$, Theorem 2.3 above and Corollary 6.1 in [2] imply that

$$ \begin{equation*} X'_{\rm s}=\{g\in\mathfrak{M}(I)\colon\mathbf{J}_{W_{p,\gamma}^1(I)}(g)< \infty\}=\operatorname{Cop}_{p',\gamma}(I) \end{equation*} \notag $$
and $\|g\|_{X'_{\rm s}}=\mathbf{J}_{W_{p,\gamma}^1(I)}(g)\approx \|g\|_{\operatorname{Cop}_{p',\gamma}(I)}$ for $g\in \operatorname{Cop}_{p',\gamma}(I)$.

Remark 2.3. Let

$$ \begin{equation*} L^\uparrow_{p,\gamma}(I):=\biggl\{f\in \mathfrak{M}^\uparrow\colon \|f\|_{L^p_{x^{\gamma-1}}(I)}= \biggl(\,\int_I( x^{\gamma-1}f(x))^{p}\,dx\biggr)^{1/p}<\infty\biggr\}. \end{equation*} \notag $$
By analogy with (2.2), if $X\in\{ \overset{\circ\circ}{W} ^1_{p,\gamma}(I), \overset{\circ}{W} ^1_{p,\gamma}(I),W^1_{p,\gamma}(I)\}$, then
$$ \begin{equation*} [X'_{\rm s}]'_{\rm s}=[L^\uparrow_{p,\gamma}]''. \end{equation*} \notag $$

Theorem 2.4. Let $1<p<\infty$, $\gamma=\sigma+1<1/p'$, and let $v_0$ and $ v_1$ be the weights of the form (2.4). Then

$$ \begin{equation*} J_{ \overset{\circ\circ}{W} ^1_{p,\gamma}(I)}(g)\approx \|g\|_{{\mathscr C}\!op_{p',\gamma}(I)}. \end{equation*} \notag $$

Corollary 2.4. Let $X= \overset{\circ\circ}{W} ^1_{p,\gamma}(I)$. Then

$$ \begin{equation} X'_{\rm w}=\bigl\{g\in L^1_{\rm loc}((0,\infty])\colon J_{ \overset{\circ\circ}{W} ^1_{p,\gamma}(I)}(g)<\infty\bigr\}={\mathscr C}\!op_{p',\gamma}(I) \end{equation} \tag{2.5} $$
and $\|g\|_{X'_{\rm w}}=J_{ \overset{\circ\circ}{W} ^1_{p,\gamma}(I)}(g)\approx \|g\|_{{\mathscr C}\!op_{p',\gamma}(I)}$ for $g\in {\mathscr C}\!op_{p',\gamma}(I)$.

2.2. A characterization of the spaces associative to Cesàro- and Copson- type spaces

Lemma 2.2. Let $[a,b]\subset I$ and $h\in L^1([a,b])$. Then for any $\varepsilon >0$ there exists $f\in \operatorname{Cop}_{p,\gamma}(I)$ such that $|f|=|h|$ on $(a,b)$ and $\|f\|_{{\mathscr C}\!op_{p,\gamma}(I)}<\varepsilon$.

Corollary 2.5. Let $g\in\mathfrak{M}(I)$. If $\operatorname{mes}(\{x\in I\colon g(x)\ne 0\})>0$, then

$$ \begin{equation*} \mathbf{J}_{{\mathscr C}\!op_{p,\gamma}(I)}(g)=\infty\quad\textit{and}\quad \mathbf{J}_{{\mathscr C}\!es_{p,\beta}(I)}(g)=\infty. \end{equation*} \notag $$
Therefore, if $X\in\{ \overset{\circ\circ}{W} ^1_{p,\beta}(I), \overset{\circ\circ}{W} ^1_{p,\gamma}(I)\}$, then, on the strength of Theorems 2.2 and 2.4,
$$ \begin{equation*} [X'_{\rm w}]'_{\rm s}=\{0\}. \end{equation*} \notag $$

In accordance with (0.1), we set

$$ \begin{equation*} \mathfrak{D}_{{\mathscr C}\!op_{p,\gamma}(I)}:= \biggl\{g\in \mathfrak{M}(I)\colon\int_I |fg|<\infty\text{ for all } f\in {{\mathscr C}\!op_{p,\gamma}(I)}\biggr\}. \end{equation*} \notag $$

Theorem 2.5. Let $g\in \mathfrak{D}_{{\mathscr C}\!op_{p,\gamma}(I)}$. Then $J_{{\mathscr C}\!op_{p,\gamma}(I)}(g)<\infty$ if and only if $g\in L^{p'}_{x^{\gamma-1}}(I)$ and $g=\widetilde g$ almost everywhere, where $\widetilde g\in \operatorname{AC}_{\rm loc}(I)$ and $D\widetilde g\in L^{p'}_{x^{\gamma}}(I)$. In addition, $\operatorname{supp} \widetilde g$ is compact in $[0,\infty)$, that is, $\widetilde g\in \overset{\circ\circ}{W} ^1_{p',\gamma}(I)$, and $J_{{\mathscr C}\!op_{p,\gamma}(I)}(g)\approx \|\widetilde g\|_{W_{p',\gamma}^1(I)}$.

A similar assertion holds for Cesàro-type spaces.

Theorem 2.6. Let $g\in \mathfrak{D}_{{\mathscr C}\!es_{p,\beta}(I)}$. Then $J_{{\mathscr C}\!es_{p,\beta}(I)}(g)<\infty$ if and only if $g\in L^{p'}_{x^{\beta-1}}(I)$, $g=\widetilde g$ almost everywhere, where $\widetilde g\in \operatorname{AC}_{\rm loc}(I)$ and $D\widetilde g\in L^{p'}_{x^{\beta}}(I)$. At the same time $\operatorname{supp} \widetilde g$ is compact in $[0,\infty)$, that is, $\widetilde g\in \overset{\circ\circ}{W} ^1_{p',\beta}(I)$, and $J_{{\mathscr C}\!es_{p,\beta}(I)}(g)\approx \|\widetilde g\|_{W_{p',\beta}^1(I)}$.

Corollary 2.6. Theorems 2.5 and 2.6 imply the assertions about the weak reflexivity of ${\mathscr C}\!op_{p,\gamma}(I)$ and ${\mathscr C}\!es_{p,\beta}(I)$ and the corresponding Sobolev spaces that are converse to (2.5) and (2.3). If $X={\mathscr C}\!op_{p,\gamma}(I)$, then

$$ \begin{equation*} X'_{\rm w}=\{g\in\mathfrak{M}(I)\colon J_{{\mathscr C}\!op_{p,\gamma}(I)}(g)< \infty\}= \overset{\circ\circ}{W} ^1_{p',\gamma}(I) \end{equation*} \notag $$
and $\|g\|_{X_{\rm w}'}=J_{{\mathscr C}\!op_{p,\gamma}(I)}(g)\approx\|g\|_{W_{p',\gamma}^1(I)}$.

Analogously, if $X={\mathscr C}\!es_{p,\beta}(I)$ then

$$ \begin{equation*} X'_{\rm w}=\{g\in\mathfrak{M}(I)\colon J_{{\mathscr C}\!es_{p,\beta}(I)}(g)< \infty\}= \overset{\circ\circ}{W} ^1_{p',\beta}(I) \end{equation*} \notag $$
and $\|g\|_{X_{\rm w}'}=J_{{\mathscr C}\!es_{p,\gamma}(I)}(g)\approx\|g\|_{W_{p',\beta}^1(I)}$.

3. Sobolev spaces and spaces associative to them

Let $1<p<\infty$ and $m\in\mathbb{N}$. Denote by $W^{p,m}$, $W_0^{p,m}$, and $H^{p,m}$ classical Sobolev spaces (see [24], Chap. 3), where $W_0^{p,m}$ and $H^{p,m}$ are the completions of $C^\infty_0$ and $C^m$, respectively, with respect to the norm

$$ \begin{equation*} \|f\|_{m,p}:=\biggl(\,\sum_{0\leqslant |\alpha|\leqslant m} \|D^\alpha f\|_p^p\biggr)^{1/p}. \end{equation*} \notag $$
It is known that $W^{p,m}=H^{p,m}$ (see [24], Theorem 3.16). If $N=\sum_{0\leqslant |\alpha|\leqslant m} 1$, then the dual of $W^{p,m}$ is a closed subspace of the vector-valued Lebesgue space $L^{p'}_N$, where $p'={p}/(p-1)$. This fact implies the reflexivity of $W^{p,m}$ and $W^{p,m}_0$ on the basis of the general reflexivity criterion for Banach spaces (see [24], Theorem 1.17) and in view of the weak compactness of a ball in $W^{p,m}$, which follows from Theorem 2 in [25], § 4. The general form of an arbitrary linear bounded functional $L\in (W^{p,m})^\ast$ was found in [24], Theorem 3.8, and an implicit formula for the norm $\|L\|$ was also presented there. Alternatively, $W^{-m,p'}:=(W^{p,m}_0)^\ast$ can be defined as the completion of the set of functionals $V:=\{L_v; v\in L^{p'}\}\subset (W^{p,m}_0)^\ast$ of the form
$$ \begin{equation*} L_v(u):=\langle u,v\rangle:=\displaystyle\int u(x)v(x)\,dx \end{equation*} \notag $$
with respect to the norm
$$ \begin{equation} \|v\|_{-m,p'}:=\sup_{0\ne u\in W^{p,m}_0} \frac{|\langle u,v\rangle|}{\|u\|_{m,p}}. \end{equation} \tag{3.1} $$
Similar results are also known for Sobolev–Orlicz spaces (see [26] and the bibliography therein).

Generally speaking, elements of $(W^{p,m})^\ast$ and $(W^{p,m}_0)^\ast$ are distributions of positive order. We study the situation when duality is replaced by associativity and restrict ourselves to two-weighted Sobolev spaces of the first order on the real axis, $ \overset{\circ\circ}{W} ^1_p(I)$, $ \overset{\circ}{W} ^1_{p}(I)$, and $W^1_{p}(I)$. Using the scheme of the proof of the reflexivity of $W^{p,m}$ and $W_0^{p,m}$, one can claim the reflexivity of $W^1_{p}(I)$ and $ \overset{\circ}{W} ^1_{p}(I)$ under the assumption that the weight functions $v_0^p$, $v_0^{-p'}$, $v_1^p$, and $v_1^{-p'}$ are locally summable. The main motivation for investigating associative spaces is the possibility to use the duality principle, which allows one to reduce the problem of the boundedness of a linear operator (say, from a Sobolev space to a Lebesgue space) to a more manageable problem concerning its conjugate operator (see, for instance, [27]–[34]).

Let $1<p<\infty$. We assume that there exists $c\in I$ such that

$$ \begin{equation} \|v_1^{-1}\|_{{L^{p'}(0,c)}}\|v_0\|_{{L^p}(0,c)}= \|v_1^{-1}\|_{L^{p'}(c,\infty)}\|v_0\|_{L^p(c,\infty)}=\infty. \end{equation} \tag{3.2} $$
Then $ \overset{\circ}{W} ^1_p(I)= W^1_p(I)$ by Lemma 1.6 in [35], and by the Oinarov–Otelbaev construction (see [35], [3], and [2]) there exists a unique pair of strictly increasing absolutely continuous functions $a(t)$ and $b(t)$ on $I$ such that
$$ \begin{equation} \begin{gathered} \, \nonumber \lim_{t\to 0}a(t)=\lim_{t\to 0}b(t)=0,\quad \lim_{t\to \infty}a(t)=\lim_{t\to \infty}b(t)=\infty,\quad a(t)<t<b(t)\quad (t>0), \\ \int_{a(t)}^t v_1^{-p'}=\int_t^{b(t)}v_1^{-p'},\quad t>0\qquad\textit{(the equilibrium condition)}, \end{gathered} \end{equation} \tag{3.3} $$
and
$$ \begin{equation} \biggl(\,\int_{a(t)}^{b(t)}v_1^{-p'}\biggr)^{1/p'} \biggl(\,\int_{a(t)}^{b(t)}v_0^p\biggr)^{1/p}=1,\quad t>0. \end{equation} \tag{3.4} $$
Let
$$ \begin{equation*} \begin{gathered} \, V_1(t):=\int_{\Delta(t)}v_1^{-p'},\qquad V_1^\pm(t):=\int_{\Delta^\pm(t)}v_1^{-p'}, \\ \Delta(t):=(a(t),b(t)),\quad \Delta^-(t):=(a(t),t),\quad \Delta^+(t):=(t,b(t)) \end{gathered} \end{equation*} \notag $$
and let $a^{-1}(t)$ be the inverse function of $a(t)$. Define
$$ \begin{equation*} \begin{aligned} \, \mathbb{G}(g)&:=\biggl(\,\int_0^\infty v_1^{-p'}(t) \biggl|\int_t^{a^{-1}(t)}\frac{g(x)}{V_1(x)}\biggl(\,\int_{a(x)}^t v_1^{-p'}\biggr)\,dx\biggr|^{p'}\,dt\biggr)^{1/p'}, \\ \mathcal{G}(g)&:=\biggl(\,\int_0^\infty v_1^{-p'}(t)V_1^{p'}(t) \biggl|\int_t^{a^{-1}(t)}\frac{g(x)}{V_1(x)} \,dx\biggr|^{p'}\,dt\biggr)^{1/p'}, \\ \mathsf{G}(g)&:=\biggl(\,\int_0^\infty \biggl(\,\int_t^{a^{-1}(t)}|g(x)|\,dx\biggr)^{p'} v_1^{-p'}(t)\,dt\biggr)^{1/p'} \end{aligned} \end{equation*} \notag $$
and set $W_p^1:=W_p^1(I)$, $ \overset{\circ}{W} ^1_p:= \overset{\circ}{W} ^1_p(I)$, and $ \overset{\circ\circ}{W} _p^1:= \overset{\circ\circ}{W} _p^1(I)$.

Theorem 3.1 ([36], Theorem 3.1, and [3], Theorems 4.1 and 4.5). Let $1<p<\infty$ and $g\in L^1_{\rm loc}(I)$. Suppose that $v_0,v_1\in {\mathscr V}_p(I)$, ${1}/{v_1}\in L^{p'}_{\rm loc}(I)$, and (3.2) is satisfied. Then, firstly,

$$ \begin{equation*} {\mathbf J}_{W_p^1}(g)={\mathbf J}_{ \overset{\circ\circ}{W} _p^1}(g)\approx \mathsf{G}(g); \end{equation*} \notag $$
and if $X=W_p^1$ or $X= \overset{\circ\circ}{W} _p^1$, then
$$ \begin{equation*} X'_{\rm s}=\bigl\{g\in L^1_{\rm loc}(I)\colon \mathsf{G}(g)<\infty, \|g\|_{X'_{\rm s}}\approx \mathsf{G}(g)\bigr\}. \end{equation*} \notag $$
Secondly,
$$ \begin{equation} J_{ \overset{\circ\circ}{W} _p^1}(g)\approx \mathbb{G}(g)+\mathcal{G}(g); \end{equation} \tag{3.5} $$
and if $X= \overset{\circ\circ}{W} _p^1$, then
$$ \begin{equation*} X'_{\rm w}=\bigl\{g\in L^1_{\rm loc}(I)\colon\mathbb{G}(g)+\mathcal{G}(g) <\infty, \|g\|_{X'_{\rm w}}\approx \mathbb{G}(g)+\mathcal{G}(g)\bigr\}. \end{equation*} \notag $$

Also, $J_{W_p^1}(g)<\infty$ if and only if

$$ \begin{equation*} \mathsf{G}(g)<\infty\quad\textit{and}\quad J_{W_p^1}(g)\approx \mathbb{G}(g)+\mathcal{G}(g). \end{equation*} \notag $$

Remark 3.1. Let $v_0=v_1\equiv 1$. Then one can expand the right-hand side of (3.1) for $W^{1,p}(I)$ using Example 7.2 in [2]. Namely,

$$ \begin{equation*} \begin{aligned} \, \|v\|_{-1,p'}&\approx \biggl(\,\int_0^\infty \biggl|\int_t^{t+1/2} v\biggr|^{p'}\,dt\biggr)^{1/p'}+\biggl[\int_0^{1/2} t^{-p'} \biggl|\int_0^t\biggl(\,\int_t^{y+1/2}v\biggr)\,dy\biggr|^{p'}\,dt \\ &\qquad+\int_{1/2}^\infty \biggl|\int_{t-1/2}^t \biggl(\,\int_t^{y+1/2}v\biggr)\,dy\biggr|^{p'}\,dt\biggr]^{1/p'}. \end{aligned} \end{equation*} \notag $$
A similar formula holds for the space $W^{1,p}(0,1)$. In this case
$$ \begin{equation*} \|v\|_{-1,p'}\approx \biggl(\,\int_0^{1/2} \biggl|\int_0^t v\biggr|^{p'}\,dt\biggr)^{{1}/{p'}}+ \biggl(\,\int_{1/2}^1\biggl|\int_t^1 v\biggr|^{p'}\,dt\biggr)^{{1}/{p'}}+ \biggl|\int_0^1 v\biggr| \end{equation*} \notag $$
(see [2], Example 7.3).

Lemma 3.1. Let $1<p<\infty$ and $X= \overset{\circ\circ}{W} _p^1$. Then the functional $\|g\|_{X'_{\rm w}}$ is a norm.

Proof. It is sufficient to show that
$$ \begin{equation*} \|g\|_{X'_{\rm w}}=0\ \ \Longrightarrow\ \ g=0 \text{ a.e. on } (0,\infty). \end{equation*} \notag $$
If $\|g\|_{X'_{\rm w}}=0$, then $\mathbb{G}(g)=\mathcal{G}(g)=0$. In particular,
$$ \begin{equation*} G(t):=\int_t^{a^{-1}(t)}\frac{g(x)}{V_1(x)} \biggl(\,\int_{a(x)}^tv_1^{-p'}\biggr)\,dx=0\quad\text{a.e. on }(0,\infty). \end{equation*} \notag $$
Hence
$$ \begin{equation*} 0=G'(t)=\frac{g(t)}{2}\quad\text{a.e. on } (0,\infty).\qquad\square \end{equation*} \notag $$

Let $1<r<\infty$ and $u\in {\mathscr V}_r(I)$. We introduce the following notation:

$$ \begin{equation*} \begin{gathered} \, L^r_u(I)=\bigl\{h\colon\|h\|_{r,u}:=\|uh\|_{L^r(I)}<\infty\bigr\}, \\ \mathfrak{L}_{p',1/{v_1}}:=\bigl\{g\in L^1_{\rm loc}(I)\colon \|g\|_{\mathfrak{L}_{p',1/{v_1}}}:=\mathsf{G}(g)<\infty\bigr\}, \end{gathered} \end{equation*} \notag $$
and
$$ \begin{equation*} \mathcal{L}_{p',1/{v_1}}:=\bigl\{g\in L^1_{\rm loc}(I)\colon \|g\|_{\mathcal{L}_{p',1/{v_1}}}:= \mathbb{G}(g)+\mathcal{G}(g)<\infty\bigr\}. \end{equation*} \notag $$

Remark 3.2. From (3.5) we obtain a Hölder-type inequality (see [1], Theorem 2.4) for the spaces $ \overset{\circ\circ}{W} _p^1$ and $\mathcal{L}_{p',1/{v_1}}$: if $1<p<\infty$, then

$$ \begin{equation*} \biggl|\int_I fg\biggr|\lesssim \|f\|_{ \overset{\circ\circ}{W} _p^1} \|g\|_{\mathcal{L}_{p',1/{v_1}}}\quad\text{for any } f\in \overset{\circ\circ}{W} _p^1 \text{ and } g\in \mathcal{L}_{p',1/{v_1}}. \end{equation*} \notag $$

We will need an alternative formulation for the norm in $\mathcal{L}_{p',1/{v_1}}$ in terms of the sequence $\{\eta_k\}_{k\in\mathbb{Z}}$ of the form

$$ \begin{equation*} \eta_0=1, \qquad \eta_{k}=a^{-1}(\eta_{k-1})\quad (k\in\mathbb{N}), \qquad \eta_{k}=a(\eta_{k+1})\quad (-k\in\mathbb{N}). \end{equation*} \notag $$
This formulation will be presented in the next lemma; for it we set
$$ \begin{equation*} G^{(\delta)}(t):={[V_1(t)]^{\delta}}\int_t^{a^{-1}(t)}\frac{g(x)}{V_1(x)} \biggl(\,\int_{a(x)}^tv_1^{-p'}\biggr)^{1-\delta}\,dx,\qquad \delta=0,1, \end{equation*} \notag $$
and observe that for $t\in[\eta_{k-1},\eta_k]$
$$ \begin{equation} G^{(\delta)}(t)=G_{1,k}^{(\delta)}(t)+G_{2,k}^{(\delta)}(t), \end{equation} \tag{3.6} $$
where
$$ \begin{equation*} G_{1,k}^{(\delta)}(t):={V^{\delta}_1(t)}\int_t^{\eta_k} \frac{g(x)}{V_1(x)}\biggl(\,\int_{a(x)}^tv_1^{-p'}\biggr)^{1-\delta}\,dx \end{equation*} \notag $$
and
$$ \begin{equation*} G_{2,k}^{(\delta)}(t):={V^{\delta}_1(t)}\int_{\eta_k}^{a^{-1}(t)} \frac{g(x)}{V_1(x)}\biggl(\,\int_{a(x)}^tv_1^{-p'}\biggr)^{1-\delta}\,dx. \end{equation*} \notag $$

Lemma 3.2. Let $1<p<\infty$, $v_0,v_1\in {\mathscr V}_p(I)$, ${1}/{v_1}\in L^{p'}_{\rm loc}(I)$, and let condition (3.2) hold. Then

$$ \begin{equation} \begin{aligned} \, \|g\|_{\mathcal{L}_{p',1/{v_1}}}^{p'}&\approx\,\sum_{k\in\mathbb{Z}} \biggl\{\int_{\eta_{k-1}}^{\eta_k}v_1^{-p'}(t) |G_{1,k}^{(0)}(t)|^{p'}\,dt+\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}(t)|G_{2,k}^{(0)}(t)|^{p'}\,dt \nonumber \\ &\qquad+\int_{\eta_{k-1}}^{\eta_k}v_1^{-p'}(t)|G_{1,k}^{(1)}(t)|^{p'}\,dt+ \int_{\eta_{k-1}}^{\eta_k}v_1^{-p'}(t)|G_{2,k}^{(1)}(t)|^{p'}\,dt\biggr\}. \end{aligned} \end{equation} \tag{3.7} $$

Proof. The upper estimate follows from (3.6) and the relation
$$ \begin{equation*} \|g\|_{\mathcal{L}_{p',1/{v_1}}}^{p'}\lesssim \sum_{k\in\mathbb{Z}}\int_{\eta_{k-1}}^{\eta_k}v_1^{-p'}(t) \bigl\{|G^{(0)}(t)|^{p'}+|G^{(1)}(t)|^{p'}\bigr\}\,dt. \end{equation*} \notag $$

To prove the lower estimate, assume that the inequality

$$ \begin{equation*} \biggl|\int_I fg\biggr|\leqslant C\|f\|_{ \overset{\circ\circ}{W} ^1_p}= C\{\|fv_0\|_p+\|f'v_1\|_p\} \end{equation*} \notag $$
holds for $C\approx\|g\|_{\mathcal{L}_{p',1/{v_1}}}$ and define the functions
$$ \begin{equation*} \begin{aligned} \, F_{1,N}^{(\delta)}(x)&:=\frac{\sum_{|k|\leqslant N}\chi_{[\eta_{k-1},\eta_k]}(x)}{V_1^-(x)}\int_{\eta_{k-1}}^x v_1^{-p'}(t) [\operatorname{sign} G^{(\delta)}_{1,k}(t)] \\ &\qquad\times \biggl(\int_{a(x)}^t v_1^{-p'}\biggr)^{1-\delta}[V_1(t)]^{\delta}|G^{(\delta)}_{1,k}(t)|^{p'-1}\,dt \end{aligned} \end{equation*} \notag $$
and
$$ \begin{equation*} \begin{aligned} \, F_{2,N}^{(\delta)}(x)&:=\frac{\sum_{|k|\leqslant N}\chi_{[\eta_{k},\eta_{k+1}]}(x)}{V_1^-(x)} \int_{a(x)}^{\eta_{k}}v_1^{-p'}(t)[\operatorname{sign} G^{(\delta)}_{2,k}(t)] \\ &\qquad\times\biggl(\int_{a(x)}^t v_1^{-p'}\biggr)^{1-\delta}[V_1(t)]^{\delta}|G^{(\delta)}_{2,k}(t)|^{p'-1}\,dt \end{aligned} \end{equation*} \notag $$
for $N\in\mathbb{N}$. If $f={F}^{(\delta)}_{1,N}+{F}^{(\delta)}_{2,N}$, then
$$ \begin{equation} \int_I g(x)f(x)\,dx=\sum_{|k|\leqslant N}\biggl\{\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}(t)|G_{1,k}^{(\delta)}(t)|^{p'}\,dt+\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}(t)|G_{2,k}^{(\delta)}(t)|^{p'}\,dt\biggr\}. \end{equation} \tag{3.8} $$
To evaluate the norm
$$ \begin{equation*} \begin{aligned} \, \bigl\|{F}^{(\delta)}_{1,N}v_0\bigr\|_p^p&=\sum_{|k|\leqslant N} \int_{\eta_{k-1}}^{\eta_k} v_0^{p}(x)\biggl|\frac{1}{V_1^-(x)} \int_{\eta_{k-1}}^x v_1^{-p'}(t)[\operatorname{sign} G^{(\delta)}_{1,k}(t)] \\ &\qquad\times \biggl(\,\int_{a(x)}^t v_1^{-p'}\biggr)^{1-\delta} [V_1(t)]^{\delta}|G^{(\delta)}_{1,k}(t)|^{p'-1}\,dt\biggr|^p\,dx, \end{aligned} \end{equation*} \notag $$
we use the characterization of weighted Hardy’s inequality (see [37], p. 6), due to which
$$ \begin{equation*} \int_{\eta_{k-1}}^{\eta_k} v_0^{p}(x)\biggl(\,\int_{\eta_{k-1}}^x v_1^{-p'}(t) |G^{(\delta)}_{1,k}(t)|^{p'-1}\,dt\biggr)^p\,dx\lesssim A_{1}^p\int_{\eta_{k-1}}^{\eta_k}v_1^{-p'}|G_{1,k}^{(\delta)}|^{p'}, \end{equation*} \notag $$
where (see (3.4))
$$ \begin{equation*} \begin{aligned} \, A_{1}&:=\sup_{\eta_{k-1}<t<\eta_k} \biggl(\,\int_t^{\eta_k} v_0^{p}\biggr)^{1/p} \biggl(\,\int_{\eta_{k-1}}^t v_1^{-p'}\biggr)^{1/p'} \\ &\leqslant \biggl(\,\int_{\eta_{k-1}}^{\eta_k} v_0^{p}\biggr)^{1/p} \biggl(\,\int_{\eta_{k-1}}^{\eta_{k}} v_1^{-p'}\biggr)^{1/p'} \leqslant 1. \end{aligned} \end{equation*} \notag $$
Using the relation
$$ \begin{equation} \begin{aligned} \, \nonumber V_1(t)=2V_1^+(t)&\leqslant 2\int_{\eta_{k-1}}^{b(t)}v_1^{-p'}\leqslant 2\int_{\eta_{k-1}}^{b(x)}v_1^{-p'} \\ &\leqslant 2V_1(x)=4V_1^-(x),\qquad \eta_{k-1}\leqslant t\leqslant x, \end{aligned} \end{equation} \tag{3.9} $$
in the case when $\delta=1$, for both $\delta=0$ and $1$ we obtain
$$ \begin{equation} \begin{aligned} \, \bigl\|{F}^{(\delta)}_{1,N}v_0\bigr\|_p^p&\leqslant \sum_{|k|\leqslant N}\int_{\eta_{k-1}}^{\eta_k} v_0^{p}(x) \biggl(\,\int_{\eta_{k-1}}^x v_1^{-p'}(t) |G^{(\delta)}_{1,k}(t)|^{p'-1}\,dt\biggr)^p\,dx \nonumber \\ &\lesssim \sum_{|k|\leqslant N}\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}|G_{1,k}^{(\delta)}|^{p'}=: [\mathbf{G}^{(\delta)}_{1,N}(g)]^{p'}. \end{aligned} \end{equation} \tag{3.10} $$
Similarly, using the relation
$$ \begin{equation} V_1(t)=2V_1^+(t)\leqslant 2\int_{a(x)}^{b(\eta_k)}v_1^{-p'}\leqslant 2V_1(x)=4 V_1^-(x), \qquad \eta_k\leqslant x\leqslant\eta_{k+1}, \end{equation} \tag{3.11} $$
we estimate the norm of the function ${F}^{(\delta)}_{2,N}$ in the same way and obtain
$$ \begin{equation*} \begin{aligned} \, \bigl\|{F}^{(\delta)}_{2,N}v_0\bigr\|_p^p&=\sum_{|k|\leqslant N} \int_{\eta_{k}}^{\eta_{k+1}} v_0^{p}(x) \biggl|\frac{1}{V_1^-(x)}\int_{a(x)}^{\eta_{k}}v_1^{-p'}(t) \bigl[\operatorname{sign}G^{(\delta)}_{2,k}(t)\bigr] \\ &\qquad\times \biggl(\,\int_{a(x)}^t v_1^{-p'}\biggr)^{1-\delta} [V_1(t)]^{\delta}|G^{(\delta)}_{2,k}(t)|^{p'-1}\,dt\biggr|^p\,dx \\ &\leqslant \sum_{|k|\leqslant N}\int_{\eta_{k}}^{\eta_{k+1}}v_0^{p}(x) \biggl(\,\int_{a(x)}^{\eta_{k}} v_1^{-p'}(t) |G^{(\delta)}_{2,k}(t)|^{p'-1}\,dt\biggr)^p\,dx \\ &\lesssim A_{2}^p\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}|G_{1,k}^{(\delta)}|^{p'}, \end{aligned} \end{equation*} \notag $$
where (see (3.4))
$$ \begin{equation*} A_{2}:=\sup_{\eta_{k-1}<t<\eta_k}\biggl(\,\int_{\eta_k}^{a^{-1}(t)} v_0^{p}\biggr)^{1/p}\biggl(\,\int_t^{\eta_{k}} v_1^{-p'}\biggr)^{1/p'}\leqslant 1. \end{equation*} \notag $$
Therefore,
$$ \begin{equation} \bigl\|{F}^{(\delta)}_{2,N}v_0\bigr\|_p^p\lesssim\sum_{|k|\leqslant N} \int_{\eta_{k-1}}^{\eta_k}v_1^{-p'}|G_{2,k}^{(\delta)}|^{p'}=: [\mathbf{G}^{(\delta)}_{2,N}(g)]^{p'}. \end{equation} \tag{3.12} $$
Further, since
$$ \begin{equation*} \begin{aligned} \, \bigl[{F}_{1,N}^{(\delta)}(x)\bigr]'&=-\sum_{|k|\leqslant N} \chi_{[\eta_{k-1},\eta_k]}(x)\frac{[V_1^-(x)]'}{[V_1^-(x)]^2} \int_{\eta_{k-1}}^x v_1^{-p'}(t)[\operatorname{sign}G^{(\delta)}_{1,k}(t)] \\ &\qquad\times\biggl(\,\int_{a(x)}^t v_1^{-p'}\biggr)^{1-\delta} [V_1(t)]^{\delta}|G^{(\delta)}_{1,k}(t)|^{p'-1}\,dt+ \sum_{|k|\leqslant N}\chi_{[\eta_{k-1},\eta_k]}(x) \\ &\qquad\times\begin{cases} v_1^{-p'}(x)[\operatorname{sign}G^{(0)}_{1,k}(x)]|G^{(0)}_{1,k}(x)|^{p'-1}& \\ \qquad-\displaystyle\frac{v_1^{-p'}(a(x))\,a'(x)}{V_1^-(x)} \int_{\eta_{k-1}}^x v_1^{-p'}[\operatorname{sign}G^{(0)}_{1,k}] |G^{(0)}_{1,k}|^{p'-1}, & \delta=0, \\ 2v_1^{-p'}(x)[\operatorname{sign} G^{(1)}_{1,k}(x)] |G^{(1)}_{1,k}(x)|^{p'-1}, & \delta=1, \end{cases} \end{aligned} \end{equation*} \notag $$
and
$$ \begin{equation*} \begin{aligned} \, \bigl[{F}_{2,N}^{(\delta)}(x)\bigr]'&=-\sum_{|k|\leqslant N} \chi_{[\eta_{k},\eta_{k+1}]}(x)\frac{[V_1^-(x)]'}{[V_1^-(x)]^2} \int_{a(x)}^{\eta_{k}} v_1^{-p'}(t)[\operatorname{sign} G^{(\delta)}_{2,k}(t)] \\ &\qquad\times\biggl(\,\int_{a(x)}^t v_1^{-p'}\biggr)^{1-\delta} [V_1(t)]^{\delta}|G^{(\delta)}_{2,k}(t)|^{p'-1}\,dt- \sum_{|k|\leqslant N}\chi_{[\eta_{k},\eta_{k+1}]}(x) \\ &\qquad\times\begin{cases} \displaystyle\frac{v_1^{-p'}(a(x))\,a'(x)}{V_1^-(x)}\int_{a(x)}^{\eta_{k}} v_1^{-p'}[\operatorname{sign} G^{(0)}_{2,k}]|G^{(0)}_{2,k}|^{p'-1}, & \delta=0, \\ \displaystyle\frac{v_1^{-p'}(a(x))\,a'(x)}{V_1^-(x)}& \\ \qquad\times[\operatorname{sign} G^{(1)}_{2,k}(a(x))]V_1^-(a(x)) |G^{(1)}_{2,k}(a(x))|^{p'-1}, & \delta=1, \end{cases} \end{aligned} \end{equation*} \notag $$
we have
$$ \begin{equation*} \bigl\|[{F}_{1,N}^{(\delta)}]'v_1\bigr\|_p \leqslant\begin{cases} I_1+\bigl[\mathbf{G}^{(0)}_{1,N}(g)\bigr]^{p'-1}+II_1, &\delta=0, \\ I_1+\bigl[\mathbf{G}^{(1)}_{1,N}(g)\bigr]^{p'-1}, &\delta=1, \end{cases} \end{equation*} \notag $$
where
$$ \begin{equation*} \begin{aligned} \, I_1^p&:=\sum_{|k|\leqslant N}\int_{\eta_{k-1}}^{\eta_k} v_1^{p}(x) \frac{|[V_1^-(x)]'|^p}{[V_1^-(x)]^{2p}} \\ &\qquad\times \biggl(\,\int_{\eta_{k-1}}^x v_1^{-p'}(t) \biggl(\,\int_{a(x)}^t v_1^{-p'}\biggr)^{1-\delta} [V_1(t)]^{\delta}|G^{(\delta)}_{1,k}(t)|^{p'-1}\,dt\biggr)^p\,dx \end{aligned} \end{equation*} \notag $$
and
$$ \begin{equation*} \begin{aligned} \, II_1^p&:=\sum_{|k|\leqslant N}\int_{\eta_{k-1}}^{\eta_k} v_1^{p}(x) [V_1^-(x)]^{-p}[v_1^{-p'}(a(x))a'(x)]^p \\ &\qquad\times\biggl(\,\int_{\eta_{k-1}}^x v_1^{-p'}(t)|G^{(0)}_{1,k}(t)|^{p'-1}\,dt\biggr)^p\,dx. \end{aligned} \end{equation*} \notag $$
Taking the relation $v_1^{-p'}(a(x))a'(x)\leqslant 2v_1^{-p'}(x)$ (see (3.24)) into account and using (3.9) for $\delta=1$. We obtain
$$ \begin{equation*} \begin{aligned} \, I_1^p&\leqslant\sum_{|k|\leqslant N}\int_{\eta_{k-1}}^{\eta_k} v_1^{p}(x) \frac{|v_1^{-p'}(x)-v_1^{-p'}(a(x))a'(x)|^p}{[V_1^-(x)]^{p}} \biggl(\,\int_{\eta_{k-1}}^xv_1^{-p'}|G^{(\delta)}_{1,k}|^{p'-1}\biggr)^p\,dx \\ &\leqslant \sum_{|k|\leqslant N}\int_{\eta_{k-1}}^{\eta_k} v_1^{p}(x) \frac{[v_1^{-p'}(x)+v_1^{-p'}(a(x))a'(x)]^p}{[V_1^-(x)]^{p}} \biggl(\,\int_{\eta_{k-1}}^xv_1^{-p'}|G^{(\delta)}_{1,k}|^{p'-1}\biggr)^p\,dx \\ &\leqslant 3^{p}\sum_{|k|\leqslant N}\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}(x) [V_1^-(x)]^{-p} \biggl(\,\int_{\eta_{k-1}}^xv_1^{-p'} |G^{(\delta)}_{1,k}|^{p'-1}\biggr)^p\,dx. \end{aligned} \end{equation*} \notag $$
Analogously,
$$ \begin{equation*} II_2^p\leqslant 2^p\sum_{|k|\leqslant N}\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}(x) \bigl[V_1^-(x)\bigr]^{-p} \biggl(\,\int_{\eta_{k-1}}^xv_1^{-p'} \bigl|G^{(0)}_{1,k}\bigr|^{p'-1}\biggr)^p\,dx. \end{equation*} \notag $$
On the strength of the boundedness conditions for the Hardy operator (see [37], p. 6), we have
$$ \begin{equation*} \int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}(x)[V_1^-(x)]^{-p} \biggl(\,\int_{\eta_{k-1}}^xv_1^{-p'}(t)|G^{(\delta)}_{1,k}(t)|^{p'-1} \,dt\biggr)^p\,dx\lesssim \mathbb{A}_1^p\int_{\eta_{k-1}}^{\eta_k} \!v_1^{-p'}|G_{1,k}^{(\delta)}|^{p'}, \end{equation*} \notag $$
where
$$ \begin{equation*} \mathbb{A}_1:=\sup_{\eta_{k-1}<t<\eta_k}\biggl(\,\int_t^{\eta_{k}}v_1^{-p'}(x) [V_1^-(x)]^{-p}\,dx\biggr)^{1/p} \biggl(\,\int_{\eta_{k-1}}^t v_1^{-p'}\biggr)^{1/p'}. \end{equation*} \notag $$
Since
$$ \begin{equation*} \begin{aligned} \, \mathbb{A}_1^p&\leqslant\sup_{\eta_{k-1}<t<\eta_k}\biggl(\,\int_t^{\eta_{k}} v_1^{-p'}(x)\biggl(\,\int_{\eta_{k-1}}^x v_1^{-p'}\biggr)^{-p}\,dx\biggr) \biggl(\,\int_{\eta_{k-1}}^t v_1^{-p'}\biggr)^{p-1} \\ &=\frac{1}{p-1}\sup_{\eta_{k-1}<t<\eta_k}\biggl[\biggl(\,\int_{\eta_{k-1}}^t v_1^{-p'}\biggr)^{1-p}-\biggl(\,\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}\biggr)^{1-p}\biggr]\biggl(\,\int_{\eta_{k-1}}^tv_1^{-p'}\biggr)^{p-1} \\ &\leqslant\frac{1}{p-1}\,, \end{aligned} \end{equation*} \notag $$
it follows that
$$ \begin{equation*} \begin{aligned} \, &\sum_{|k|\leqslant N}\int_{\eta_{k-1}}^{\eta_k} \frac{v_1^{-p'}(x)} {[V_1^-(x)]^{p}}\biggl(\,\int_{\eta_{k-1}}^xv_1^{-p'}(t) |G^{(\delta)}_{1,k}(t)|^{p'-1}\,dt\biggr)^p\,dx \\ &\qquad\lesssim\sum_{|k|\leqslant N}\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}|G_{1,k}^{(\delta)}|^{p'}=[\mathbf{G}^{(\delta)}_{1,N}(g)]^{p'}, \end{aligned} \end{equation*} \notag $$
that is,
$$ \begin{equation*} \bigl\|[{F}_{1,N}^{(\delta)}]'v_1\bigr\|_p \lesssim [\mathbf{G}^{(\delta)}_{1,N}(g)]^{p'-1}. \end{equation*} \notag $$
From this, (3.10), and (3.8), letting $N$ tend to infinity we derive the required estimate
$$ \begin{equation} \|g\|_{\mathcal{L}_{p',1/{v_1}}}^{p'}\gtrsim \sum_{k\in\mathbb{Z}}\biggl\{\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}(t)|G_{1,k}^{(0)}(t)|^{p'}\,dt+\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}(t)|G_{1,k}^{(1)}(t)|^{p'}\,dt\biggr\}. \end{equation} \tag{3.13} $$

Similarly, given that

$$ \begin{equation*} V_1^-(x)=\frac{1}{2}V_1(x)\geqslant \frac{1}{2}V_1^+(a(x))= \frac{1}{4}V_1(a(x)) \end{equation*} \notag $$
for $\delta=1$, we obtain
$$ \begin{equation*} \bigl\|[{F}_{2,N}^{(\delta)}]'v_1\bigr\|_p\leqslant\begin{cases} I_2+II_2, &\delta=0, \\ I_2+[{G}^{(2)}_{1,N}(g)]^{p'-1}, &\delta=1, \end{cases} \end{equation*} \notag $$
where
$$ \begin{equation*} \begin{aligned} \, I_2^p&:=\sum_{|k|\leqslant N}\int_{\eta_{k}}^{\eta_{k+1}} v_1^{p}(x) \frac{|[V_1^-(x)]'|^p}{[V_1^-(x)]^{2p}} \\ &\qquad\times \biggl(\,\int_{a(x)}^{\eta_{k}} v_1^{-p'}(t) \biggl(\,\int_{a(x)}^t v_1^{-p'}\biggr)^{1-\delta} [V_1(t)]^{\delta}|G^{(\delta)}_{2,k}(t)|^{p'-1}\,dt\biggr)^p\,dx \end{aligned} \end{equation*} \notag $$
and
$$ \begin{equation*} II_2^p:=\sum_{|k|\leqslant N}\int_{\eta_{k}}^{\eta_{k+1}} \frac{v_1^{p}(x)}{\bigl[V_1^-(x)\bigr]^{p}} [v_1^{-p'}(a(x))\,a'(x)]^p \biggl(\,\int_{a(x)}^{\eta_{k}} v_1^{-p'}|G^{(0)}_{2,k}|^{p'-1}\biggr)^p\,dx, \end{equation*} \notag $$
and, analogously to the previous case (also see (3.11) for $\delta=1$),
$$ \begin{equation*} \begin{aligned} \, I_2^p&\leqslant\sum_{|k|\leqslant N}\int_{\eta_{k}}^{\eta_{k+1}} v_1^{p}(x) \frac{|v_1^{-p'}(x)-v_1^{-p'}(a(x))a'(x)|^p}{[V_1^-(x)]^{p}} \biggl(\,\int_{a(x)}^{\eta_{k}} v_1^{-p'} |G^{(\delta)}_{2,k}|^{p'-1}\biggr)^p\,dx \\ &\lesssim \sum_{|k|\leqslant N}\int_{\eta_{k}}^{\eta_{k+1}} v_1^{-p'}(x) [V_1^-(x)]^{-p}\biggl(\,\int_{a(x)}^{\eta_{k}} v_1^{-p'}|G^{(\delta)}_{2,k}|^{p'-1}\biggr)^p\,dx \end{aligned} \end{equation*} \notag $$
and
$$ \begin{equation*} II_2^p\lesssim\sum_{|k|\leqslant N}\int_{\eta_{k}}^{\eta_{k+1}} v_1^{-p'}(x)[V_1^-(x)]^{-p} \biggl(\,\int_{a(x)}^{\eta_{k}} v_1^{-p'}(t)|G^{(0)}_{2,k}(t)|^{p'-1}\,dt\biggr)^p\,dx. \end{equation*} \notag $$
From Hardy’s inequality (see [37], p. 6) again, it follows that
$$ \begin{equation*} \int_{\eta_{k}}^{\eta_{k+1}}\! v_1^{-p'}(x)[V_1^-(x)]^{-p} \biggl(\,\int_{a(x)}^{\eta_{k}} v_1^{-p'}(t) |G^{(0)}_{2,k}(t)|^{p'-1}\,dt\biggr)^p\,dx\lesssim \mathbb{A}_2^p\int_{\eta_{k-1}}^{\eta_k}\! v_1^{-p'}|G_{2,k}^{(\delta)}|^{p'}, \end{equation*} \notag $$
where
$$ \begin{equation*} \mathbb{A}_2:=\sup_{\eta_{k-1}<t<\eta_k} \biggl(\,\int_{\eta_{k}}^{a^{-1}(t)} v_1^{-p'}(x) [V_1^-(x)]^{-p}\,dx\biggr)^{1/p} \biggl(\,\int_t^{\eta_{k}} v_1^{-p'}\biggr)^{1/p'}. \end{equation*} \notag $$
We have
$$ \begin{equation*} \begin{aligned} \, \mathbb{A}_2^p&\leqslant\sup_{\eta_{k-1}<t<\eta_k} \biggl(\,\int_{\eta_{k}}^{a^{-1}(t)} v_1^{-p'}(x) \biggl(\,\int_{t}^x v_1^{-p'}\biggr)^{-p}\,dx\biggr) \biggl(\,\int_t^{\eta_{k}} v_1^{-p'}\biggr)^{p-1} \\ &=\frac{1}{p-1}\sup_{\eta_{k-1}<t<\eta_k} \biggl[\biggl(\,\int_t^{\eta_{k}} v_1^{-p'}\biggr)^{1-p}- \biggl(\,\int_t^{a^{-1}(t)} v_1^{-p'}\biggr)^{1-p}\biggr] \biggl(\,\int_t^{\eta_{k}} v_1^{-p'}\biggr)^{p-1} \\ &\leqslant\frac{1}{p-1}\,. \end{aligned} \end{equation*} \notag $$
Therefore,
$$ \begin{equation*} \begin{aligned} \, &\sum_{|k|\leqslant N}\int_{\eta_{k}}^{\eta_{k+1}} \frac{v_1^{-p'}(x)}{[V_1^-(x)]^{p}} \biggl(\,\int_{a(x)}^{\eta_{k}}v_1^{-p'}(t) |G^{(\delta)}_{2,k}(t)|^{p'-1}\,dt\biggr)^p\,dx \\ &\qquad\lesssim\sum_{|k|\leqslant N}\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}|G_{2,k}^{(\delta)}|^{p'}= [\mathbf{G}^{(\delta)}_{2,N}(g)]^{p'}, \end{aligned} \end{equation*} \notag $$
which, in combination with (3.12) and (3.8), yields the inequality
$$ \begin{equation*} \|g\|_{\mathcal{L}_{p',1/{v_1}}}^{p'}\gtrsim \sum_{k\in\mathbb{Z}}\biggl\{\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}(t)\bigl|G_{2,k}^{(0)}(t)\bigr|^{p'}\,dt+\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}(t)\bigl|G_{2,k}^{(1)}(t)\bigr|^{p'}\,dt\biggr\} \end{equation*} \notag $$
as $N\to\infty$. Thus (also see (3.13)) the required estimate is established. $\Box$

Lemma 3.2 is the basis for the proof of the following assertion.

Lemma 3.3. Let $1<p<\infty$, $v_0,v_1\in {\mathscr V}_p(I)$, ${1}/{v_1}\in L^{p'}_{\rm loc}(I)$, and let (3.2) hold. Then the space $\mathfrak{L}_{p',1/{v_1}}$ is dense in $\mathcal{L}_{p',1/{v_1}}$.

Proof. Let $g\in \mathcal{L}_{p',1/{v_1}}$. Then because of (3.7),
$$ \begin{equation} \begin{aligned} \, &\lim_{n\to\infty}\sum_{|k|\geqslant n}\biggl\{\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}(t)|G_{1,k}^{(0)}(t)|^{p'}\,dt+\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}(t)|G_{2,k}^{(0)}(t)|^{p'}\,dt \nonumber \\ &\qquad+\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}(t)|G_{1,k}^{(1)}(t)|^{p'}\,dt+\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}(t)|G_{2,k}^{(1)}(t)|^{p'}\,dt\biggr\}=0. \end{aligned} \end{equation} \tag{3.14} $$

For $N\in\mathbb{N}$ we set $g_N:=\chi_{[\eta_{-N},\eta_N]}g$. Then

$$ \begin{equation*} G(|g_N|)^{p'}=\biggl\{\int_0^{\eta_{-N-1}}+\int_{\eta_{-N-1}}^{\eta_{N}}+ \int_{\xi_{N}}^{\infty}\biggr\}\,v_1^{-p'}(x) \biggl(\,\int_x^{a^{-1}(x)}|g_N|\biggr)^{p'}\,dx, \end{equation*} \notag $$
where
$$ \begin{equation*} \begin{aligned} \, &\int_0^{\eta_{-N-1}}v_1^{-p'}(x)\biggl(\,\int_x^{a^{-1}(x)} |\chi_{[\eta_{-N},\eta_N]}g|\biggr)^{p'}\,dx=0 \\ &\qquad=\int_{\eta_{N}}^\infty v_1^{-p'}(x) \biggl(\,\int_x^{a^{-1}(x)}|\chi_{[\eta_{-N},\eta_N]}g|\biggr)^{p'}\,dx. \end{aligned} \end{equation*} \notag $$
For the remaining integral we have
$$ \begin{equation*} \int_{\eta_{-N-1}}^{\eta_{N}}v_1^{-p'}(x)\biggl(\,\int_x^{a^{-1}(x)} |\chi_{[\eta_{-N},\eta_N]}g|\biggr)^{p'}\,dx\leqslant \int_{\eta_{-N-1}}^{\eta_{N}}v_1^{-p'} \biggl(\,\int_{\eta_{-N-1}}^{\eta_{N+1}}|g|\biggr)^{p'}<\infty, \end{equation*} \notag $$
so that $g_N\in \mathfrak{L}_{p',1/{v_1}}$.

We set $G_{i,k}^{(\delta)}(t)=:H_{i,k}^{(\delta)}g(t)$, $i=1,2$, and write

$$ \begin{equation*} \begin{aligned} \, &\|g-g_N\|_{\mathcal{L}_{p',1/{v_1}}}^{p'}=\sum_{i=1,2}\,\sum_{\delta=1,2}\, \sum_{k\in\mathbb{Z}}\int_{\eta_{k-1}}^{\eta_k}v_1^{-p'}(t) \bigl|H_{i,k}^{(\delta)}g(t)-H_{i,k}^{(\delta)}g_N(t)\bigr|^{p'}\,dt \\ &\qquad=\sum_{i=1,2}\,\sum_{\delta=1,2}\,\sum_{k\in\mathbb{Z}} \int_{\eta_{k-1}}^{\eta_k}v_1^{-p'}(t)\bigl|H_{i,k}^{(\delta)} (\chi_{(0,\eta_{-N})}g)(t) +H_{i,k}^{(\delta)}(\chi_{(\eta_{N},\infty)}g)(t)\bigr|^{p'}\,dt \\ &\qquad=\sum_{i=1,2}\,\sum_{\delta=1,2}\,\sum_{k\leqslant -N-1} \int_{\eta_{k-1}}^{\eta_k}v_1^{-p'}|G_{i,k}^{(\delta)}|^{p'}+ \sum_{\delta=1,2}\int_{\eta_{-N-1}}^{\eta_{-N}}v_1^{-p'} |G_{1,N}^{(\delta)}|^{p'} \\ &\qquad\qquad+\sum_{\delta=1,2}\int_{\eta_{N-1}}^{\eta_{N}} v_1^{-p'}|G_{2,N}^{(\delta)}|^{p'}+\sum_{i=1,2}\,\sum_{\delta=1,2}\, \sum_{k\geqslant N+1}\int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}|G_{i,k}^{(\delta)}|^{p'} \\ &\qquad\leqslant\sum_{i=1,2}\,\sum_{\delta=1,2}\,\sum_{|k|\geqslant N} \int_{\eta_{k-1}}^{\eta_k} v_1^{-p'}(t)|G_{i,k}^{(\delta)}(t)|^{p'}\,dt. \end{aligned} \end{equation*} \notag $$
The assertion of the lemma follows from this on the basis of (3.14). $\Box$

Now we make an important addition to the last assertion of Theorem 3.1.

Remark 3.3. Let $X=W_p^1$. Then by Theorem 3.1,

$$ \begin{equation*} X'_{\rm w}=\bigl\{g\in \mathfrak{L}_{p',1/{v_1}}\colon \|g\|_{X'_{\rm w}} \approx\|g\|_{\mathcal{L}_{p',1/{v_1}}}<\infty\bigr\}. \end{equation*} \notag $$
This implies that $X'_{\rm w}\subset \mathcal{L}_{p',1/{v_1}}$, and the embedding is strict, since there are examples of functions $g_0\in\mathcal{L}_{ p',1/{v_1}}$ such that $g_0\notin\mathfrak{L}_{p',1/{v_1}}$ (see [3], Remark 5.5).

Indeed, if $g_0\in X'_{\rm w}$, then by Theorem 2.5 in [3],

$$ \begin{equation*} \|g_0\|_{X'_{\rm w}}=J_X(g_0)<\infty\ \ \Longleftrightarrow \ \ \infty>\mathbf{J}_X(g_0)=\|g_0\|_{\mathfrak{L}_{p',1/{v_1}}}=\infty, \end{equation*} \notag $$
that is, we have a contradiction.

Let

$$ \begin{equation*} \begin{aligned} \, X'_{\rm ext}&:=\Bigl\{g\in\mathcal{L}_{p',1/{v_1}}\colon \text{ there exists } \{g_k\}\subset X'_{\rm w} \text{ such that } \\ &\qquad\qquad\qquad\qquad\lim_{k\to\infty}\|g-g_k\|_{\mathcal{L}_{p',1/{v_1}}}=0 \text{ and } \|g\|_{X'_{\rm ext}}:=\lim_{k\to\infty}\|g_k\|_{X'_{\rm w}}\Bigr\}. \end{aligned} \end{equation*} \notag $$
Observe that the definition of $X'_{\rm ext}$ does not depend on the choice of $\{g_k\}$. This is why
$$ \begin{equation*} X'_{\rm ext}\hookrightarrow\mathcal{L}_{p',1/{v_1}} \quad\text{and}\quad \|g\|_{\mathcal{L}_{p',1/{v_1}}}\leqslant \|g\|_{X'_{\rm ext}}. \end{equation*} \notag $$
Conversely, let $g\in\mathcal{L}_{p',1/{v_1}}$. Then by Lemma 3.3 there exists a sequence $\{g_k\}\subset \mathfrak{L}_{p',1/{v_1}} \subset X'_{\rm w}$ such that $\|g\|_{\mathcal{L}_{p',1/{v_1}}} =\lim_{k\to\infty}\|g_k\|_{\mathcal{L}_{p',1/{v_1}}} =\|g\|_{X'_{\rm ext}}$. Hence $g\in X'_{\rm ext}$ and the inclusion $\mathcal{L}_{p',1/{v_1}}\subset X'_{\rm ext}$ holds; furthermore, $\|g\|_{X'_{\rm ext}} =\|g\|_{\mathcal{L}_{p',1/{v_1}}}$. Consequently,
$$ \begin{equation*} X'_{\rm ext}=\mathcal{L}_{p',1/{v_1}} \end{equation*} \notag $$
with the equality of the norms.

We need the following technical assertion for Corollary 3.1, from which it follows that $[X'_{\rm w}]'_{\rm s}=\{0\}$.

Lemma 3.4. Let $1<p<\infty$, $[c,d]\subset (0,\infty)$, and $h\in L^1([c,d])$. Then for any $\varepsilon>0$ there exists $g\in \mathfrak{L}_{p',1/{v_1}}$ such that $|g|=|h|V_1$ on $[c,d]$ and $\|g\|_{\mathcal{L}_{p',1/{v_1}}}<\varepsilon$.

Proof. First we show that for $g$ such that $\operatorname{supp}g\subset[c,d]$ we have
$$ \begin{equation} \|g\|_{\mathcal{L}_{p',1/{v_1}}}^{p'}\lesssim [V_1(c)]^{p'+1}\biggl|\int_c^d \frac{g}{V_1}\biggr|^{p'}+ \int_{c}^{d}v_1^{-p'}(t)V_1^{p'}(t) \biggl|\int_t^d\frac{g}{V_1}\biggr|^{p'}\,dt. \end{equation} \tag{3.15} $$
We start with the functional $\mathcal{G}(g)$, for which, by the triangle inequality, we have the estimate
$$ \begin{equation*} \begin{aligned} \, \mathcal{G}(g\chi_{[c,d]})&\leqslant\biggl(\,\int_{a(c)}^d v_1^{-p'}(t) V_1^{p'}(t)\,\biggl|\int_t^{a^{-1}(t)}\frac{\chi_{[c,d]}(x)g(x)}{V_1(x)} \,dx\biggr|^{p'}\,dt\biggr)^{1/p'} \\ &\leqslant \biggl(\,\int_{a(c)}^d v_1^{-p'}(t)V_1^{p'}(t)\biggl|\int_t^d \frac{\chi_{[c,d]}(x)g(x)}{V_1(x)}\,dx\biggr|^{p'}\,dt\biggr)^{1/p'} \\ &\qquad+\biggl(\,\int_{a(c)}^{d} v_1^{-p'}(t)V_1^{p'}(t) \biggl|\int_{a^{-1}(t)}^d \frac{\chi_{[c,d]}(x)g(x)}{V_1(x)}\,dx\biggr|^{p'}\,dt\biggr)^{1/p'}. \end{aligned} \end{equation*} \notag $$
Since for any $\alpha>0$
$$ \begin{equation} \int_{a(t)}^t v_1^{-p'}[V_1^+]^{\alpha}\leqslant \int_{a(t)}^t v_1^{-p'}(x)\biggl[\int_{a(t)}^{b(x)} v_1^{-p'}\biggr]^{\alpha}\,dx\leqslant [V_1(t)]^{\alpha+1}, \end{equation} \tag{3.16} $$
we have
$$ \begin{equation} \begin{aligned} \, &\int_{a(c)}^d v_1^{-p'}(t)V_1^{p'}(t)\biggl|\int_t^d \frac{\chi_{[c,d]}(x)g(x)}{V_1(x)}\,dx\biggr|^{p'}\,dt \nonumber \\ &\qquad=\int_{a(c)}^c v_1^{-p'}(t)V_1^{p'}(t)\biggl|\int_c^d \frac{g(x)}{V_1(x)}\,dx\biggr|^{p'}\,dt+\int_{c}^d v_1^{-p'}(t) V_1^{p'}(t)\biggl|\int_t^d\frac{g(x)}{V_1(x)}\,dx\biggr|^{p'}\,dt \nonumber \\ &\qquad\lesssim [V_1(c)]^{p'+1}\biggl|\int_c^d \frac{g}{V_1}\biggr|^{p'}+ \int_{c}^{d}v_1^{-p'}(t)V_1^{p'}(t) \biggl|\int_t^d \frac{g}{V_1}\biggr|^{p'}\,dt. \end{aligned} \end{equation} \tag{3.17} $$
With the help of the substitution $y=a^{-1}(t)$, using (3.24) and the inequality $V_1^+(a(y))\leqslant V_1(y)$ we obtain
$$ \begin{equation*} \begin{aligned} \, &\int_{a(c)}^{d} v_1^{-p'}(t)V_1^{p'}(t)\biggl|\int_{a^{-1}(t)}^d \frac{\chi_{[c,d]}(x)g(x)}{V_1(x)}\,dx\biggr|^{p'}\,dt \\ &\qquad=\int_{a(c)}^{a(d)}v_1^{-p'}(t)V_1^{p'}(t)\biggl|\int_{a^{-1}(t)}^d \frac{\chi_{[c,d]}(x)g(x)}{V_1(x)}\,dx\biggr|^{p'}\,dt \\ &\qquad\leqslant\int_{c}^{d} v_1^{-p'}(a(y))V_1^{p'}(a(y))a'(y) \biggl|\int_{y}^d\frac{\chi_{[c,d]}(x)g(x)}{V_1(x)}\,dx\biggr|^{p'}\,dt \\ &\qquad\lesssim \int_{c}^{d} v_1^{-p'}(y)V_1^{p'}(y) \biggl|\int_{y}^d\frac{\chi_{[c,d]}(x)g(x)}{V_1(x)}\,dx\biggr|^{p'}\,dt \\ &\qquad=\int_{c}^{d} v_1^{-p'}(y)V_1^{p'}(y) \biggl|\int_{y}^d\frac{g(x)}{V_1(x)}\,dx\biggr|^{p'}\,dt. \end{aligned} \end{equation*} \notag $$
This yields estimate (3.15) for the component $\mathcal{G}(g\chi_{[c,d]})$ of the norm $\|g\chi_{[c,d]}\|_{\mathcal{L}_{p',1/{ v_1}}}^{p'}$. To show the same for $\mathbb{G}(g\chi_{[c,d]})$ we write
$$ \begin{equation*} \begin{aligned} \, &\int_0^\infty v_1^{-p'}(t)\biggl|\int_t^{a^{-1}(t)} \frac{\chi_{[c,d]}(x)g(x)}{V_1(x)} \biggl(\,\int_{a(x)}^tv_1^{-p'}\biggr)\,dx\biggr|^{p'}\,dt \\ &\qquad=\int_{a(c)}^dv_1^{-p'}(t)\biggl|\int_t^{a^{-1}(t)} \frac{\chi_{[c,d]}(x)g(x)}{V_1(x)} \biggl(\,\int_{a(x)}^tv_1^{-p'}\biggr)\,dx\biggr|^{p'}\,dt \\ &\qquad=\int_{a(c)}^d v_1^{-p'}(t)\biggl|\int_{a(t)}^tv_1^{-p'}(y) \biggl(\,\int_t^{a^{-1}(y)} \frac{\chi_{[c,d]}(x)g(x)}{V_1(x)}\,dx\biggr)\,dy\biggr|^{p'}\,dt. \end{aligned} \end{equation*} \notag $$
By virtue of the triangle and Hölder inequalities
$$ \begin{equation*} \begin{aligned} \, \mathbb{G}(g\chi_{[c,d]})&=\biggl(\,\int_{a(c)}^d v_1^{-p'}(t) \biggl(\,\int_{a(t)}^tv_1^{-p'}(y)\biggl|\int_t^{a^{-1}(y)} \frac{\chi_{[c,d]}g}{V_1}\biggr|\,dy\biggr)^{p'}\,dt\biggr)^{1/p'} \\ &\leqslant \biggl(\,\int_{a(c)}^d v_1^{-p'}(t) \biggl(\,\int_{a(t)}^tv_1^{-p'}(y)\biggl|\int_t^d \frac{\chi_{[c,d]}g}{V_1}\biggr|\,dy\biggr)^{p'}\,dt\biggr)^{1/p'} \\ &\quad+\biggl(\,\int_{a(c)}^{a(d)}v_1^{-p'}(t)\biggl(\,\int_{a(t)}^tv_1^{-p'}(y) \biggl|\int_{a^{-1}(y)}^d \frac{\chi_{[c,d]}g}{V_1}\biggr|\,dy\biggr)^{p'}\,dt\biggr)^{1/p'} \\ &\leqslant\biggl(\,\int_{a(c)}^d v_1^{-p'}(t)V_1^{p'}(t) \biggl|\int_t^d\frac{\chi_{[c,d]}g}{V_1}\biggr|^{p'}\,dt\biggr)^{1/p'} \\ &\quad+\biggl(\,\int_{a(c)}^{a(d)} v_1^{-p'}(t)V_1^{p'-1}(t) \biggl(\,\int_{a(t)}^tv_1^{-p'}(y)\biggl|\int_{a^{-1}(y)}^d \frac{\chi_{[c,d]}g}{V_1}\biggr|^{p'}\,dy\biggr)\,dt\biggr)^{1/p'}\!. \end{aligned} \end{equation*} \notag $$
Hence and in view of the fact that (see (3.16) and (3.24))
$$ \begin{equation*} \begin{aligned} \, &\int_{a(c)}^{a(d)} v_1^{-p'}(t)V_1^{p'-1}(t) \biggl(\,\int_{a(t)}^tv_1^{-p'} (y)\biggl|\int_{a^{-1}(y)}^d \frac{\chi_{[c,d]}(x)g(x)}{V_1(x)}\,dx\biggr|^{p'}\,dy\biggr)\,dt \\ &\qquad=\int_{a(a(c))}^{a(d)} v_1^{-p'} (y)\biggl|\int_{a^{-1}(y)}^d \frac{\chi_{[c,d]}(x)g(x)}{V_1(x)}\,dx\biggr|^{p'} \biggl(\,\int_y^{a^{-1}(y)} v_1^{-p'}(t)\,V_1^{p'-1}(t)\,dt\biggr)\,dy \\ &\qquad\lesssim\int_{a(c)}^{a(d)} v_1^{-p'} (y)V_1^{p'}(a^{-1}(y)) \biggl|\int_{a^{-1}(y)}^d \frac{\chi_{[c,d]}(x)g(x)}{V_1(x)}\,dx\biggr|^{p'}\,dy \\ &\qquad\lesssim\int_{c}^{d} v_1^{-p'}(t)V_1^{p'}(t)\biggl|\int_{t}^d \frac{g(x)}{V_1(x)}\,dx\biggr|^{p'}\,dy, \end{aligned} \end{equation*} \notag $$
estimate (3.15) for the component $\mathbb{G}(g\chi_{[c,d]})$ follows if we take (3.17) into account.

The next step is to fix $\varepsilon>0$ and put

$$ \begin{equation*} n>\varepsilon^{-1}\biggl(\,\int_c^d v_1^{-p'}V_1^{p'}\biggr)^{1/p'}\int_c^d|h|. \end{equation*} \notag $$
Let $\{\alpha_i\}_{i=0}^n$ be a partition of $[c,d]$ such that $\displaystyle\int_{\alpha_i}^{\alpha_{i+1}}|h|= n^{-1}\displaystyle\int_c^d|h|$. We choose $\beta_i\in[\alpha_i,\alpha_{i+1}]$ so that $\displaystyle\int_{\alpha_i}^{\beta_{i}}|h|= \displaystyle\int_{\beta_i}^{\alpha_{i+1}}|h|$, $i\in\{0,\dots,n-1\}$. Put
$$ \begin{equation*} \widetilde{g}:=V_1|h|\sum_{i=0}^{n-1}(\chi_{[\alpha_i,\beta_i]}- \chi_{(\beta_i,\alpha_{i+1)}}). \end{equation*} \notag $$
Then $\widetilde{g}\in \mathfrak{L}_{p',1/{v_1}}$, $|\widetilde{g}|=|h|V_1$ on $[c,d]$, $\displaystyle\int_{\alpha_i}^{\alpha_{i+1}}\dfrac{\widetilde{g}}{V_1}=0$ for $i=0,\dots,n-1$, and (see (3.15))
$$ \begin{equation*} \begin{aligned} \, \|\widetilde{g}\|_{\mathcal{L}_{p',1/{v_1}}}^{p'}&\lesssim \int_{c}^{d}v_1^{-p'}(x)V_1^{p'}(x) \biggl|\int_x^d \frac{\widetilde{g}}{V_1}\biggr|^{p'}\,dx \\ &=\sum_{i=0}^{n-1}\int_{\alpha_i}^{\alpha_{i+1}}v_1^{-p'}(x)V_1^{p'}(x) \biggl|\int_x^{\alpha_{i+1}} \frac{\widetilde{g}}{V_1}\biggr|^{p'}\,dx \\ &=\sum_{i=0}^{n-1}\int_{\alpha_i}^{\alpha_{i+1}}v_1^{-p'}(x)V_1^{p'}(x) \biggl|\int_{\alpha_{i}}^x \frac{\widetilde{g}}{V_1}\biggr|^{p'}\,dx \\ &\leqslant \sum_{i=0}^{n-1} \biggl(\,\int_{\alpha_{i}}^{\alpha_{i+1}}|h|\biggr)^{p'} \int_{\alpha_i}^{\alpha_{i+1}}v_1^{-p'}V_1^{p'} \\ &=n^{-p'}\biggl(\,\int_{c}^{d} |h|\biggr)^{p'}\sum_{i=0}^{n-1} \int_{\alpha_i}^{\alpha_{i+1}}v_1^{-p'}V_1^{p'} \\ &=n^{-p'}\biggl(\,\int_{c}^{d} |h|\biggr)^{p'}\int_{c}^{d}v_1^{-p'}V_1^{p'}< \varepsilon^{p'}. \qquad\square \end{aligned} \end{equation*} \notag $$

Corollary 3.1. Let $f\in\mathfrak{M}(I)$. If $\operatorname{mes}\{x\in I\colon f(x)\ne 0\}>0$ then

$$ \begin{equation*} \mathbf{J}_{\mathcal{L}_{p',1/{v_1}}}(f)=\infty. \end{equation*} \notag $$

Proof. Let $f\not\equiv 0$. Then there is an interval $[c,d]\subset I$ such that $c<d$ and $\operatorname{mes}\bigl((c,d)\cap \{x\in I\colon f(x)\ne 0\}\bigr)>0$. Fix an arbitrary $\varepsilon>0$. By Lemma 3.4 there exists $\widetilde{g}\in\mathfrak{L}_{p',1/{v_1}}$ with $\operatorname{supp}\widetilde{g}=[c,d]$ such that $\|\widetilde{g}\|_{\mathcal{L}_{p',1/{v_1}}}<\varepsilon$ and $|\widetilde{g}|=V_1$ on $(c, d)$. Then
$$ \begin{equation*} \mathbf{J}_{\mathcal{L}_{p',1/{v_1}}}(f)\geqslant \frac{\int_I|f\widetilde{g}|}{\|\widetilde{g}\|_{\mathcal{L}_{p',1/{v_1}}}}\geqslant \varepsilon^{-1}\int_c^d|f|V_1. \qquad\square \end{equation*} \notag $$

In the final part of this section we obtain the main result. We start with auxiliary assertions.

Lemma 3.5. Let $1<p<\infty$, $v_0,v_1\in {\mathscr V}_p(I)$, ${1}/{v_1}\in L^{p'}_{\rm loc}(I)$, and let (3.2) hold. Then

$$ \begin{equation} L_{1/{v_0}}^{p'}(I)\subset \mathcal{L}_{p',1/{v_1}} \end{equation} \tag{3.18} $$
and
$$ \begin{equation} \|g\|_{\mathcal{L}_{p',1/{v_1}}}\lesssim \|g\|_{p',1/{v_0}} \end{equation} \tag{3.19} $$
for any $g\in L_{1/{v_0}}^{p'}(I)$.

Proof. Since
$$ \begin{equation} V_1^+(t)\leqslant\int_{t}^{b(x)}v_1^{-p'}\leqslant V_1(x)=2V_1^-(x),\qquad t\leqslant x\leqslant a^{-1}(t), \end{equation} \tag{3.20} $$
we have
$$ \begin{equation*} \|g\|_{\mathcal{L}_{p',1/{v_1}}}\lesssim\biggl(\,\int_0^\infty v_1^{-p'}(t) \biggl(\,\int_t^{a^{-1}(t)}|g(x)|\,dx\biggr)^{p'}\,dt\biggr)^{1/p'}. \end{equation*} \notag $$
Then (3.19) would follow from the estimate
$$ \begin{equation} \biggl(\,\int_0^\infty v_1^{-p'}(t)\biggl(\,\int_t^{a^{-1}(t)} |g(x)|\,dx\biggr)^{p'}\,dt\biggr)^{1/p'}\leqslant C\|g\|_{p',1/{v_0}}. \end{equation} \tag{3.21} $$
Consider the inequality dual to (3.21),
$$ \begin{equation*} \biggl(\,\int_0^\infty v_0^{p}(y) \biggl(\,\int_{a(y)}^y|f|\biggr)^{p}\,dy\biggr)^{1/p}\leqslant C\|f\|_{p,v_1}, \end{equation*} \notag $$
which is a consequence of the estimate
$$ \begin{equation*} \biggl(\,\int_0^\infty v_0^{p}(y) \biggl(\,\int_{a(y)}^{b(y)}|f|\biggr)^{p}\,dy\biggr)^{1/p}\leqslant C_1\|f\|_{p,v_1}. \end{equation*} \notag $$
It is known (see [3], Theorem 3.1) that
$$ \begin{equation*} C_1\approx\mathcal{A}:=\sup_t\biggl(\,\int_{a(t)}^{b(t)}v_1^{-p'}\biggr)^{1/p'} \biggl(\,\int_{b^{-1}(t)}^{a^{-1}(t)}v_0^{p}\biggr)^{1/p}. \end{equation*} \notag $$
Set $V_0(t):=\displaystyle\int_{a(t)}^{b(t)}v_0^p$ and $V_0^\pm(t):=\displaystyle\int_{\Delta^\pm(t)}v_0^p$. From (3.20) we obtain
$$ \begin{equation*} V_1^+(t)\leqslant V_1(a^{-1}(t))\quad\text{and}\quad \int_t^{a^{-1}(t)}v_0^p\leqslant\int_t^{b(a^{-1}(t))}v_0^p=:V_0^+(a^{-1}(t)). \end{equation*} \notag $$
Therefore, by (3.4),
$$ \begin{equation*} \mathcal{A}_a(t):=\biggl(\,\int_{a(t)}^{b(t)}v_1^{-p'}\biggr)^{1/p'} \biggl(\,\int_{t}^{a^{-1}(t)}v_0^{p}\biggr)^{1/p}\leqslant V_1(a^{-1}(t))^{1/p'}V_0(a^{-1}(t))^{1/p}=1. \end{equation*} \notag $$
Analogously,
$$ \begin{equation*} \mathcal{A}_b(t):=\biggl(\,\int_{a(t)}^{b(t)}v_1^{-p'}\biggr)^{1/p'} \biggl(\,\int_{b^{-1}(t)}^tv_0^{p}\biggr)^{1/p}\leqslant V_1(b^{-1}(t))^{1/p'}V_0(b^{-1}(t))^{1/p}=1. \end{equation*} \notag $$
Hence it follows that
$$ \begin{equation*} \mathcal{A}\approx\sup_{t>0}[\mathcal{A}_a(t)+\mathcal{A}_b(t)]\lesssim 1, \end{equation*} \notag $$
and (3.19) is proved together with the lemma. $\Box$

Corollary 3.2. Let $1<p<\infty$ and $f\in \mathfrak{D}_{\mathcal{L}_{p',1/{v_1}}}$ (see (0.1)). If the conditions of Lemma 3.5 are satisfied, then the embedding (3.18) entails the relations $f\in L_{v_0}^p(I)$ and

$$ \begin{equation} \infty>J_{\mathcal{L}_{p',1/{v_1}}}(f)\gtrsim \|f\|_{p,v_0}. \end{equation} \tag{3.22} $$

Proof. By Lemma 3.5,
$$ \begin{equation*} J_{\mathcal{L}_{p',1/{v_1}}}(f)=\sup_{0\ne g\in \mathcal{L}_{p',1/{v_1}}} \frac{\bigl|\int_I gf\bigr|}{\|g\|_{\mathcal{L}_{p',1/{v_1}}}}\gtrsim \sup_{0\ne g\in L_{1/{v_0}}^{p'}(I)} \frac{\bigl|\int_I gf\bigr|} {\|g\|_{p',1/{v_0}}}=\|f\|_{p,v_0}, \end{equation*} \notag $$
which proves the corollary.

Lemma 3.6. Let $1<p<\infty$, and let the assumptions of Lemma 3.5 be satisfied. If $J_{\mathcal{L}_{p',1/{v_1}}}(f)<\infty$, then $f=\widetilde{f}$ almost everywhere, where $\widetilde{f}\in \operatorname{AC}_{\rm loc}(I)$ and

$$ \begin{equation} \infty>J_{\mathcal{L}_{p',1/{v_1}}}(f)\gtrsim\|\widetilde{f}'\|_{p,v_1}. \end{equation} \tag{3.23} $$

Proof. Let
$$ \begin{equation*} g_\phi(x):=\frac{d\phi}{dx}\,,\qquad \phi\in C_0^\infty(I). \end{equation*} \notag $$
Let us show that $g_\phi\in \mathcal{L}_{p',1/{v_1}}$. To do this we establish the inequalities $\mathbb{G}(g_\phi)\lesssim \|\phi\|_{p',1/{v_1}}$ and $\mathcal{G}(g_\phi)\lesssim \|\phi\ |_{p',1/{v_1}}$. Taking the equality
$$ \begin{equation} v_1^{-p'}(a(x))a'(x)+v_1^{-p'}(b(x))b'(x)= 2v_1^{-p'}(x), \end{equation} \tag{3.24} $$
which follows from the equilibrium condition (3.3), into account we write
$$ \begin{equation} \begin{aligned} \, &\int_t^{a^{-1}(t)}\frac{g_\phi(x)}{V_1(x)} \biggl(\,\int_{a(x)}^tv_1^{-p'}\biggr)\,dx=-\phi(t)+\int_t^{a^{-1}(t)}\phi(x) \biggl\{\frac{v_1^{-p'}(a(x))a'(x)}{V_1^-(x)} \nonumber \\ &\qquad\qquad+\frac{v_1^{-p'}(x)\int_{a(x)}^tv_1^{-p'}}{[V_1^-(x)]^2}- \frac{v_1^{-p'}(a(x))a'(x)\int_{a(x)}^tv_1^{-p'}}{[V_1^-(x)]^2}\biggr\}\,dx \nonumber \\ &\qquad\leqslant |\phi(t)|+ 5\int_t^{a^{-1}(t)}\frac{v_1^{-p'}(x)|\phi(x)|}{V_1^-(x)}\,dx. \end{aligned} \end{equation} \tag{3.25} $$
Then
$$ \begin{equation*} \mathbb{G}(g_\phi)\lesssim \|\phi\|_{p',v_1^{-1}}+ \biggl(\,\int_0^\infty v_1^{-p'}(t)\biggl(\,\int_t^{a^{-1}(t)} \frac{v_1^{-p'}(x)|\phi(x)|}{V_1^-(x)}\,dx\biggr)^{p'}\,dt\biggr)^{1/p'}. \end{equation*} \notag $$
Set $h=v_1^{-1}|\phi|$ and consider the inequality dual to
$$ \begin{equation} \biggl(\,\int_0^\infty v_1^{-p'}(t)\biggl(\,\int_t^{a^{-1}(t)} \frac{v_1^{1-p'}(x)h(x)}{V_1^-(x)}\,dx\biggr)^{p'}\,dt\biggr)^{1/p'}\leqslant C\|h\|_{p'} \end{equation} \tag{3.26} $$
namely,
$$ \begin{equation*} \biggl(\,\int_0^\infty \frac{v_1^{-p'}(x)}{[V_1^-(x)]^p} \biggl(\,\int_{a(x)}^x{v_1^{-1}(t)|\psi(t)|}\,dt\biggr)^{p}\,dx\biggr)^{1/p} \leqslant C\|\psi\|_{p}, \end{equation*} \notag $$
which follows from the estimate
$$ \begin{equation*} \biggl(\,\int_0^\infty \frac{v_1^{-p'}(x)}{[V_1^-(x)]^p} \biggl(\,\int_{a(x)}^{b(x)}{v_1^{-1}(t)|\psi(t)|}\,dt\biggr)^p\,dx\biggr)^{1/p} \leqslant C_2\|\psi\|_{p}. \end{equation*} \notag $$
On the strength of the boundedness criteria for Hardy–Steklov operators,
$$ \begin{equation*} C_2\approx\mathscr{A}:=\sup_t\biggl(\,\int_{a(t)}^{b(t)}v^{-p'}_1\biggr)^{1/p'} \biggl(\,\int_{b^{-1}(t)}^{a^{-1}(t)}\frac{v^{-p'}_1}{[V_1^-]^p}\biggr)^{1/p} \end{equation*} \notag $$
([38], Theorem 1). Since $\displaystyle\int_{b^{-1}(t)}^{a^{-1}(t)}{v^{-p'}_1}{[V_1^-]^{-p}} \lesssim V_1^{1-p}(t)$ (see [2], (5.18)), we have $\mathscr{A}\lesssim 1$, so that $\mathbb{G}(g_\phi)\lesssim \|\phi\|_{p',v_1^{-1}}<\infty$.

Similarly, we obtain

$$ \begin{equation*} \begin{aligned} \, &\int_t^{a^{-1}(t)}\frac{g_\phi(x)}{V_1(x)}\,dx \\ &\qquad=\frac{\phi(a^{-1}(t))}{V_1^-(a^{-1}(t))}-\frac{\phi(t)}{V_1^-(t)} +\int_t^{a^{-1}(t)}\phi(x)\, \frac{v_1^{-p'}(x)-v_1^{-p'}(a(x))a'(x)}{[V_1^-(x)]^2}\,dx \\ &\qquad\leqslant \frac{|\phi(a^{-1}(t))|} {V_1^-(a^{-1}(t))} +\frac{|\phi(t)|}{V_1^-(t)} +\int_t^{a^{-1}(t)}|\phi(x)|\, \frac{v_1^{-p'}(x)+v_1^{-p'}(a(x))a'(x)}{[V_1^-(x)]^2}\,dx. \end{aligned} \end{equation*} \notag $$
Since $2v_1^{-p'}(a^{-1}(t))[a^{-1}(t)]'\geqslant v_1^{-p'}(t)$ (see (3.24) for $x=a^{-1}(t)$) and $V_1(a^{-1}(t))\geqslant V_1^+(t)=V_1(t)/2$, we have
$$ \begin{equation*} \begin{aligned} \, &\int_0^\infty v_1^{-p'}(t)V_1^{p'}(t) \biggl[\frac{|\phi(a^{-1}(t))|}{V_1^-(a^{-1}(t))}+ \frac{|\phi(t)|}{V_1^-(t)}\biggr]^{p'}\,dt \\ &\qquad\lesssim \int_0^\infty [a^{-1}(t)]'|\phi(a^{-1}(t)) v_1^{-1}(a^{-1}(t))|^{p'}\,dt+\int_0^\infty |\phi(t)v_1^{-1}(t)|^{p'}\,dt \simeq \|\phi\|_{p',v_1^{-1}}. \end{aligned} \end{equation*} \notag $$
Furthermore,
$$ \begin{equation*} \begin{aligned} \, &\int_0^\infty v_1^{-p'}(t)\,V_1^{p'}(t)\biggl(\,\int_t^{a^{-1}(t)}|\phi(x)|\, \frac{v_1^{-p'}(x)+ v_1^{-p'}(a(x))a'(x)}{[V_1^-(x)]^2}\,dx\biggr)^{p'}\,dt \\ &\qquad\leqslant\int_0^\infty v_1^{-p'}(t)\biggl(\,\int_t^{a^{-1}(t)}|\phi(x)|\, \frac{v_1^{-p'}(x)+ v_1^{-p'}(a(x))a'(x)}{V_1^-(x)}\,dx\biggr)^{p'}\,dt \\ &\qquad\leqslant 3\int_0^\infty v_1^{-p'}(t)\biggl(\,\int_t^{a^{-1}(t)} \frac{v_1^{-p'}(x)|\phi(x)|}{V_1^-(x)}\,dx\biggr)^{p'}\,dt \\ &\qquad\simeq\int_0^\infty v_1^{-p'}(t)\biggl(\,\int_t^{a^{-1}(t)} \frac{v_1^{1-p'}(x)h(x)}{V_1^-(x)}\,dx\biggr)^{p'}\,dt \end{aligned} \end{equation*} \notag $$
(see (3.26)). Therefore, $\mathcal{G}(g_\phi)\lesssim \|\phi\|_{p',1/{v_1}}<\infty$ and
$$ \begin{equation} \|g_\phi\|_{\mathcal{L}_{p',1/{v_1}}}\lesssim \|\phi\|_{p',1/{v_1}}. \end{equation} \tag{3.27} $$
From (3.27) we obtain
$$ \begin{equation} \begin{aligned} \, \sup_{0\ne \phi\in C^\infty_0(I)} \frac{\bigl|\int_I f\phi'\bigr|}{\|\phi\|_{p',1/{v_1}}}&\lesssim \sup_{0\ne \phi\in C^\infty_0(I)} \frac{\bigl|\int_I fg_\phi\bigr|}{\|g_\phi\|_{\mathcal{L}_{p',1/{v_1}}}} \nonumber \\ &\leqslant\sup_{g\in \mathcal{L}_{p',1/{v_1}}} \frac{\bigl|\int_I fg\bigr|}{\|g\|_{\mathcal{L}_{p',1/{v_1}}}}= J_{\mathcal{L}_{p',1/{v_1}}}(f)<\infty. \end{aligned} \end{equation} \tag{3.28} $$

Now we put $\Lambda\phi:=\displaystyle\int_I f\phi'$, $\phi\in C^\infty_0(I)$. By virtue of (3.28) the inequality $|\Lambda\phi|\lesssim\|\phi\|_{p',1/{v_1}}$ holds. By the Hahn–Banach theorem $\Lambda$ can be extended to $\widetilde{\Lambda}\in\bigl(L^{p'}_{1/{v_1}}(I)\bigr)^\ast$. By Riesz’s representation theorem there exists $u\in L^p_{v_1}(I)$ such that $\widetilde{\Lambda}h=-\displaystyle\int_I uh$, $h\in L^{p'}_{1/{v_1}} (I)$. Hence

$$ \begin{equation} -\int_I u\phi=\int_I f\phi',\qquad \phi\in C_0^\infty(I), \end{equation} \tag{3.29} $$
that is, $u$ is a distributional derivative of $f$. Therefore, according to Theorem 7.13 in [39], the function $f$ coincides with some $\widetilde f\in \operatorname{AC}_{\rm loc}(I)$ almost everywhere and $u=\widetilde{f}'$. Then (3.29) implies that
$$ \begin{equation*} J_{\mathcal{L}_{p',1/{v_1}}}(f)\geqslant\sup_{0\ne \phi\in C^\infty_0(I)} \frac{\bigl|\int_I fg_\phi\bigr|}{\|g_\phi\|_{\mathcal{L}_{p',1/{v_1}}}} \gtrsim\sup_{0\ne \phi\in C^\infty_0(I)} \frac{\bigl|\int_I \widetilde{f}'\phi\bigr|}{\|\phi\|_{p',1/{v_1}}}= \|\widetilde{f}'\|_{p,v_1}. \qquad\square \end{equation*} \notag $$

The main result of this work is contained in the following assertion.

Theorem 3.2. Let $1<p<\infty$ and $f\in\mathfrak{D}_{\mathcal{L}_{p',1/{v_1}}}$. Then $J_{\mathcal{L}_{p',1/{v_1}}}(f)<\infty$ if and only if $f=\widetilde{f}\in \overset{\circ\circ}{W} ^1_p$ almost everywhere and $\|f\|_{W^1_p}\approx J_{\mathcal{L}_{p',1/{v_1}}}(f)$. As a consequence, the equalities

$$ \begin{equation*} \overset{\circ\circ}{W} ^1_p=[\mathcal{L}_{p',1/{v_1}}]'_{\rm w}=[[ \overset{\circ\circ}{W} ^1_p]'_{\rm w}]'_{\rm w} \end{equation*} \notag $$
hold.

Proof. Sufficiency follows from Remark 3.2.

Necessity. It is established by inequalities (3.22) and (3.23) that $\widetilde{f}\in W^1_p$. Let us show that $\operatorname{supp}\widetilde{f}$ is bounded in $[0,\infty)$. Let $E:=\{x\in I\colon |\widetilde f(x)|>0\}$. Since $|\widetilde f|$ is continuous on $I$, $E$ is open set. Suppose that $\operatorname{mes}((b,\infty)\cap E)>0$ for each $b\in I$. Then there exists a sequence of intervals $\{[a_k,b_k]\}_1^\infty\subset I$ such that

$$ \begin{equation*} b_k<a_{k+1}\quad\text{and}\quad m_k:=\min_{x\in [a_k,b_k]}|\widetilde f(x)|V_1(x)>0. \end{equation*} \notag $$
Put $\theta_k:=\dfrac{1}{k m_k(b_k-a_k)}$ . By Lemma 3.4 we can choose functions $g_k\in \mathcal{L}_{p',1/{v_1}}$ so that $\|g_k\|_{\mathcal{L}_{p ',1/{v_1}}}<2^{-k}$ and $|g_k|=\theta_k V_1$ on $(a_k,b_k)$. Let $g:=\sum_{k=1}^\infty g_k$. Then $\|g\|_{\mathcal{L}_{p',1/{v_1}}}\leqslant 1$ and
$$ \begin{equation*} \int_I|\widetilde{f}g|\geqslant \sum_{k=1}^\infty \theta_k m_k(b_k-a_k)= \sum_{k=1}^\infty\frac{1}{k}=\infty, \end{equation*} \notag $$
which contradicts the fact that $J_{\mathcal{L}_{p',1/{v_1}}}(f)<\infty$.

Similarly, one can show that $\limsup_{t\to 0+}|\widetilde{f}(t)|=0$. This implies that $\operatorname{supp}\widetilde{f}\subset [0,\infty)$ is compact. $\Box$

Remark 3.4. The results of this section are valid for the Sobolev spaces $ \overset{\circ\circ}{W} ^1_p(I)$ on an arbitrary interval $I=(a,b)\subset \mathbb{R}$ under condition (3.2).

4. Boundedness criterion for the Hilbert transform from a weighted Sobolev space to a weighted Lebesgue space

An important problem in harmonic analysis is the characterization of weighted norm inequalities for the Hilbert operator. The first work in this direction was Babenko’s paper [40] on the boundedness of the conjugate function in a Lebesgue space with power weight. Then this problem has been considered since the 1970s, and in [41] Hunt, Muckenhoupt, and Wheeden discovered that the Hilbert transform is bounded in weighted Lebesgue spaces $L^p_w$, $1<p<\infty$, if and only if the weight $w$ belongs to the Muckenhoupt class $A_p$. The subsequent attempts to extend this result to more general cases of summation parameters and weights in $L^p_w$ have met with serious difficulties (see [42]–[44] for the case $p=2$ and different weights). Some progress, however, has been achieved by narrowing down subclasses of $L^p_w$ (see [45] and [46], for example).

In this part of the paper we consider the action of the Hilbert transform

$$ \begin{equation*} Hf(x)=\textrm{p. v.}\int_0^\infty\frac{f(t)}{x-t}\,dt, \qquad x>0, \end{equation*} \notag $$
from a weighted Sobolev space of the first order to a weighted Lebesgue space on the semi-axis. In particular, sufficient conditions for the boundedness of $H\colon \overset{\circ\circ}{W} _p^1(I)\to L^q_w(I)$ are established for $1<p,q<\infty$ and some classes of weights $v_0,v_1,w\in\mathfrak{M}^+(I)$. The main results in this section are taken from [47].

We assume that the weight functions $v_0$ and $v_1$ are such that

$$ \begin{equation} \|f\|_{{p},{v_0}}\lesssim\|f'\|_{{p},{v_1}} \quad\text{for } f\in \overset{\circ\circ}{W} ^1_p(I). \end{equation} \tag{4.1} $$
On the strength of Remark 1.4 in [37], condition (4.1) is satisfied if and only if
$$ \begin{equation*} {\mathbf A}_0:=\sup_{(s,t)\subset I}\biggl(\,\int_s^t v_0^p\biggr)^{1/p} \biggl(\min\biggl\{\int_0^s v_1^{-p'},\int_t^\infty v_1^{-p'}\biggr\}\biggr)^{1/p'}<\infty. \end{equation*} \notag $$
In such a case
$$ \begin{equation} \|f\|_{W_{p}^1(I)}\approx \|f'\|_{{p},{v_1}}, \end{equation} \tag{4.2} $$
that is, the norm in the two-weighted Sobolev space $W_{p}^1(I)$ is equivalent to the norm $\|f'\|_{{p},{v_1}}$ of ‘one-weighted Sobolev space’. In the general case the first space is obviously strictly smaller than the second.

Lemma 4.1. Let $1<p<\infty$ and let $v_0$ and $v_1$ be weights such that

$$ \begin{equation} {\mathbf A}_1:=\sup_{t\in I}\biggl(\,\int_0^t v_0^p\biggr)^{1/p} \biggl(\,\int_t^\infty v_1^{-p'}\biggr)^{1/p'}<\infty. \end{equation} \tag{4.3} $$
Then
$$ \begin{equation} Hf(x)=\int_0^\infty k(x,s)f'(s)\,ds=:Lf'(x), \qquad f\in \overset{\circ\circ}{W} ^1_p(I), \end{equation} \tag{4.4} $$
where
$$ \begin{equation} k(x,s)=\int_0^s\frac{dt}{x-t}=\begin{cases} \log\dfrac{x}{x-s}\,, &0<s<x, \\ \log\dfrac{x}{s-x}\,, &x<s<2x, \\ \log\dfrac{x}{s-x}\,, &s\geqslant 2x, \end{cases} \end{equation} \tag{4.5} $$
and
$$ \begin{equation*} \begin{aligned} \, Lg(x)&=\int_0^{x}\log\biggl(\frac{x}{x-s}\biggr)g(s)\,ds+ \int_x^{2x}\log\biggl(\frac{x}{s-x}\biggr)g(s)\,ds \\ &\qquad+\int_{2x}^\infty\log\biggl(\frac{x}{s-x}\biggr)g(s)\,ds \\ &=:L_1g(x)+L_2g(x)-L_3g(x). \end{aligned} \end{equation*} \notag $$

Hence, on the basis of (4.2), (4.4), (4.5) and because $ \overset{\circ\circ}{W} ^1_p(I)$ is dense in $ \overset{\circ}{W} ^1_p(I)$, we have

$$ \begin{equation*} \|H\|_{ \overset{\circ\circ}{W} ^1_p(I)\to L^q_{w}(I)}=\sup_{0\ne f\in \overset{\circ\circ}{W} ^1_p(I)} \frac{\|Hf\|_{q,{w}}}{\|f\|_{W_p^1(I)}}\approx \sup_{0\ne f\in \overset{\circ}{W} _p^1(I)}\frac{\|Lf'\|_{q,{w}}}{\|f'\|_{p,{v_1}}} \end{equation*} \notag $$
and
$$ \begin{equation} \|H\|_{ \overset{\circ}{W} ^1_p(I)\to L^q_{w}(I)}=\|H\|_{ \overset{\circ\circ}{W} ^1_p(I)\to L^q_{w}(I)} \lesssim\sum_{i=1}^3\|L_i\|_{L_{v_1}^p(I)\to L^q_{w}(I)}, \end{equation} \tag{4.6} $$
where $H$ is extended to $ \overset{\circ}{W} ^1_p(I)$ by continuity.

The three theorems below give auxiliary two-sided estimates for the norms $\|L_i\|_{L_{v_1}^p(I)\to L^q_{w}(I)}$, $i=1,2,3$, which are also of independent interest.

The inequality $\|L_1g\|_{q,w}\lesssim\|g\|_{p,{v_1}}$ was characterized in [48] under the condition $v_1\in\mathfrak{M}^\uparrow$.

Theorem 4.1 (see [48]). Let $1<p<\infty$, $0<q<\infty$, $1/r=(1/q-1/p)_+$, and $v_1\in\mathfrak{M}^\uparrow$. Then the inequality

$$ \begin{equation*} \biggl(\,\int_0^\infty w^q(x)\biggl(\,\int_0^x \log\biggl(\frac{x}{x-y}\biggr) g(y)\,dy\biggr)^q\,dx\biggr)^{1/q}\leqslant C\biggl(\,\int_0^\infty (gv_1)^p\biggr)^{1/p},\qquad\!\!\!\! g\in\mathfrak{M}^+, \end{equation*} \notag $$
holds if and only if

(i) $A<\infty$ for $1<p\leqslant q<\infty$, where

$$ \begin{equation} A:=\sup_{t\in I}\biggl(\,\int_t^\infty \frac{w^q(x)\,dx}{x^q}\biggr)^{1/q} \biggl(\,\int_0^t\frac{x^{p'}\,dx}{v_1^{p'}(x)}\biggr)^{1/p'}, \end{equation} \tag{4.7} $$
and $C=\|L_1\|_{L_{v_1}^p(I)\to L^q_{w}(I)}\approx A$;

(ii) $B<\infty$ for $0<q<p<\infty$ and $p>1$, where

$$ \begin{equation} B:=\biggl(\,\int_0^\infty\biggl(\,\int_t^\infty\frac{w^q(x)dx}{x^q}\biggr)^{r/q} \biggl(\,\int_0^t\frac{x^{p'}\,dx}{v_1^{p'}(x)}\biggr)^{r/q'} \frac{t^{p'}}{v_1^{p'}(t)}\,dt\biggr)^{1/r}, \end{equation} \tag{4.8} $$
and $C=\|L_1\|_{L_{v_1}^p(I)\to L^q_{w}(I)}\approx B$.

The following theorem gives estimates for $L_2$.

Theorem 4.2. Let $1<p<\infty$, $1<q<\infty$, $1/r=(1/q-1/p)_+$, $v_1\in\mathfrak{M}^\uparrow$, and let there exist $\gamma>0$ such that $x^{-\gamma}v_1(x)\in\mathfrak{M}^\downarrow$. Then the inequality

$$ \begin{equation*} \begin{aligned} \, &\biggl(\,\int_0^\infty w^q(x)\biggl(\,\int_x^{2x}\log\biggl(\frac{x}{y-x}\biggr) g(y)\,dy\biggr)^q\,dx\biggr)^{1/q} \\ &\qquad\leqslant C\biggl(\,\int_0^\infty (gv_1)^p\biggr)^{1/p},\qquad g\in\mathfrak{M}^+, \end{aligned} \end{equation*} \notag $$
is valid if and only if
$$ \begin{equation} \biggl(\,\int_0^\infty \frac{w^q(x)}{x^q}\biggl(\,\int_{3x/2}^{2x}(2x-y) g(y)\,dy\biggr)^q\,dx\biggr)^{1/q}\leqslant D\biggl(\,\int_0^\infty (gv_1)^p\biggr)^{1/p},\qquad g\in\mathfrak{M}^+, \end{equation} \tag{4.9} $$
and $\mathbb{A}<\infty$, where
$$ \begin{equation} \mathbb{A}:=\begin{cases} \displaystyle\sup_{k\in\mathbb{Z}}\,\sup_{t\in[a^k,a^{k+1}]} \biggl(\,\int_{a^{k}}^t\omega^q\biggr)^{1/q}\biggl(\,\int_t^{a^{k+2}} u^{p'}\biggr)^{1/p'}, & p\leqslant q, \\ \displaystyle\biggl(\,\sum_{k\in\mathbb{Z}}\int_{a^k}^{a^{k+1}}\omega^q(x) \biggl(\,\int_{a^{k}}^x\omega^q\biggr)^{r/p}\biggl(\,\int_x^{a^{k+2}} u^{p'}\biggr)^{r/p'}\,dx\biggr)^{1/r}, & q<p, \end{cases} \end{equation} \tag{4.10} $$
$a\in(1,\sqrt{2}\,)$, $\omega(x):=w(x)/x^\gamma$, and $u(y):=y^\gamma/v_1(y)$. Moreover,
$$ \begin{equation*} C=\|L_2\|_{L_{v_1}^p(I)\to L^q_{w}(I)}\approx D+\mathbb{A}. \end{equation*} \notag $$

Now we estimate the norm of the operator $L_3$.

Theorem 4.3. The inequality

$$ \begin{equation*} \biggl(\,\int_0^\infty w^q(x)\biggl(\,\int_{2x}^\infty \log\biggl(\frac{s-x}{x}\biggr) \frac{h(s)}{v_1(s)}\,ds\biggr)^q\,dx\biggr)^{1/q}\leqslant C\biggl(\,\int_0^\infty h^p\biggr)^{1/p},\qquad h\in\mathfrak{M}^+, \end{equation*} \notag $$
is equivalent to
$$ \begin{equation} \biggl(\,\int_0^\infty \frac{w^q(x)}{x^q}\biggl(\,\int_{2x}^{3x}(s-2x) \frac{h(s)}{v_1(s)}\,ds\biggr)^q\,dx\biggr)^{1/q}\leqslant D_1\biggl(\,\int_0^\infty h^p\biggr)^{1/p} \end{equation} \tag{4.11} $$
and
$$ \begin{equation} \biggl(\,\int_0^\infty w^q(x)\biggl(\,\int_{3x}^\infty \log\biggl(\frac{s}{x}\biggr) \frac{h(s)}{v_1(s)}\,ds\biggr)^q\,dx\biggr)^{1/q}\leqslant D_2\biggl(\,\int_0^\infty h^p\biggr)^{1/p}. \end{equation} \tag{4.12} $$
In addition, $C=\|L_3\|_{L_{v_1}^p(I)\to L^q_{w}(I)}\approx D_1+D_2$.

Remark 4.1. (a) Let $a(x)=3x$ and $k(y,x)=\log(y/x)$. Then

$$ \begin{equation*} k(y,x)\approx k(y,z)+k(a(z),x),\qquad 0<x\leqslant z\leqslant a^{-1}(y)<\infty. \end{equation*} \notag $$
This means that the kernel $k(y,x)=\log(y/x)$ belongs to the Oinarov class $\mathbb{O}_a$ (see [38], Definition 2.3), and by Corollary 2.2 in [38]
$$ \begin{equation*} D_2\approx \begin{cases} A_0+A_1, & p\leqslant q, \\ B_0+B_1, & q<p, \end{cases} \end{equation*} \notag $$
where
$$ \begin{equation*} \begin{gathered} \, A_0:=\sup_{t\in I}\biggl(\,\int_0^t\log^q\biggl(\frac{3t}{x}\biggr) w^q(x)\,dx\biggr)^{1/q}\biggl(\,\int_{3t}^\infty v_1^{-p'}\biggr)^{1/p'}, \\ A_1:=\sup_{t\in I}\biggl(\,\int_0^t w^q\biggr)^{1/q} \biggl(\,\int_{3t}^\infty \log^{p'}\biggl(\frac{y}{t}\biggr) v_1^{-p'}(y)\,dy\biggr)^{1/p'}, \\ B_0:=\biggl(\biggl(\,\int_0^{t/3}\log^q\biggl(\frac{t}{x}\biggr) w^q(x)\,dx\biggr)^{r/q}\biggl(\,\int_{t}^\infty v_1^{-p'}\biggr)^{r/q'} v_1^{-p'}(t)\,dt\biggr)^{1/r}, \end{gathered} \end{equation*} \notag $$
and
$$ \begin{equation*} B_1:=\biggl(\biggl(\,\int_0^{t}w^q\biggr)^{r/p}\biggl(\,\int_{3t}^\infty \log^{p'}\biggl(\frac{y}{t}\biggr) v_1^{-p'}(y)\,dy\biggr)^{r/p'} w^q(t)\,dt\biggr)^{1/r}. \end{equation*} \notag $$

(b) Inequalities (4.9) and (4.11) were characterized in [49], Theorems 3.2 and 3.1, respectively. We formulate estimates in the case when $p\leqslant q$. The case when $q<p$ can also be characterized, but in a discrete form, so we omit the details.

Applying Theorem 3.2 from [49] to the best constant $D$ in (4.9), we find that

$$ \begin{equation*} D\approx {\mathcal A}_0+{\mathcal A}_1,\qquad p\leqslant q, \end{equation*} \notag $$
where
$$ \begin{equation*} {\mathcal A}_0:=\sup_{t\in I}\,\sup_{3t/2<s<t} \biggl(\,\int_s^t(x-s)^q x^{-q} w^q(x)\,dx\biggr)^{1/q} \biggl(\,\int_{3t/2}^{2s} v_1^{-p'}\biggr)^{1/p'} \end{equation*} \notag $$
and
$$ \begin{equation*} {\mathcal A}_1:=\sup_{t\in I}\,\sup_{3t/2<s<t} \biggl(\,\int_s^t x^{-q} w^q(x)\,dx\biggr)^{1/q}\biggl(\,\int_{3t/2}^{2s} (2s-y)^{p'}v_1^{-p'}(y)\,dy\biggr)^{1/p'}. \end{equation*} \notag $$
Similarly, applying Theorem 3.1 from [49] to the smallest constant $D_1$ in (4.11), we obtain
$$ \begin{equation*} D_1\approx {\mathcal A}^*_0+{\mathcal A}^*_1,\qquad p\leqslant q, \end{equation*} \notag $$
where
$$ \begin{equation*} {\mathcal A}^*_0:=\sup_{t\in I}\,\sup_{s<t<3s/2}\biggl(\,\int_s^t(t-x)^q x^{-q} w^q(x)\,dx\biggr)^{1/q}\biggl(\,\int_{2t}^{3s} v_1^{-p'}\biggr)^{1/p'} \end{equation*} \notag $$
and
$$ \begin{equation*} {\mathcal A}^*_1:=\sup_{t\in I}\,\sup_{s<t<3s/2} \biggl(\,\int_s^t X^{-q}w^q(x)\, dx\biggr)^{1/q}\biggl(\,\int_{2t}^{3s}(y-2t)^{p'} v_1^{-p'}(y)\,dy\biggr)^{1/p'}. \end{equation*} \notag $$

Example 4.1. Let $1/p'<\alpha<1+1/p'$, and let

$$ \begin{equation*} W^1_{p,\alpha}(I):=\{f\in \operatorname{AC}(I)\colon\|f\|_{W^1_{p,\alpha}}:= \|f\|_{L^p_{x^{\alpha-1}}}+\|f'\|_{L^p_{x^{\alpha}}}<\infty\}. \end{equation*} \notag $$
Then
$$ \begin{equation} \|Hf\|_{L^p_{x^{\alpha -1}}}\lesssim \|f\|_{W^1_{p,\alpha}}. \end{equation} \tag{4.13} $$

Equation (4.6) and Theorems 3.1, 4.2, and 4.3 imply the main result of this section.

Theorem 4.4. Let $1<p,q<\infty$. Suppose that ${\mathbf A}_1<\infty$ (see (4.3)), $v_1\in\mathfrak{M}^\uparrow(I)$ and there exists $\gamma>0$ such that $x^{-\gamma}v_1(x)\in\mathfrak{M}^\downarrow$. Then

$$ \begin{equation} \|H\|_{ \overset{\circ}{W} ^1_p(I)\to L^q_{w}(I)}\lesssim {\mathbb D}+{\mathbb A}+D+D_1+D_2, \end{equation} \tag{4.14} $$
where ${\mathbb D}=A$ (see (4.7)) for $p\leqslant q$ and ${\mathbb D}=B$ (see (4.8)) for $q<p$, and the constants ${\mathbb A}$, $D$, $D_1$, and $D_2$ were defined in (4.10), (4.9), (4.11), and (4.12), respectively. The explicit values of $D$, $D_1$, and $D_2$ are given in Remark 4.1.


Bibliography

1. C. Bennett and R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp.  mathscinet  zmath
2. D. V. Prokhorov, V. D. Stepanov, and E. P. Ushakova, “Characterization of the function spaces associated with weighted Sobolev spaces of the first order on the real line”, Uspekhi Mat. Nauk, 74:6(450) (2019), 119–158  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 74:6 (2019), 1075–1115  crossref  adsnasa
3. D. V. Prokhorov, V. D. Stepanov, and E. P. Ushakova, “On associate spaces of weighted Sobolev space on the real line”, Math. Nachr., 290:5–6 (2017), 890–912  crossref  mathscinet  zmath
4. G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc., 120, no. 576, Amer. Math. Soc., Providence, RI, 1996, viii+130 pp.  crossref  mathscinet  zmath
5. K.-G. Grosse-Erdmann, The blocking technique, weighted mean operators and Hardy's inequality, Lecture Notes in Math., 1679, Springer-Verlag, Berlin, 1998, x+114 pp.  crossref  mathscinet  zmath
6. S. V. Astashkin and L. Maligranda, “Structure of Cesàro function spaces: a survey”, Function spaces X, Banach Center Publ., 102, Polish Acad. Sci. Inst. Math., Warsaw, 2014, 13–40  crossref  mathscinet  zmath
7. K. Leśnik and L. Maligranda, “Abstract Cesàro spaces. Duality”, J. Math. Anal. Appl., 424:2 (2015), 932–951  crossref  mathscinet  zmath
8. B. D. Hassard and D. A. Hussein, “On Cesàro function spaces”, Tamkang J. Math., 4 (1973), 19–25  mathscinet  zmath
9. A. Kamińska and D. Kubiak, “On the dual of Cesàro function space”, Nonlinear Anal., 75:5 (2012), 2760–2773  crossref  mathscinet  zmath
10. G. Sinnamon, “Transferring monotonicity in weighted norm inequalities”, Collect. Math., 54:2 (2003), 181–216  mathscinet  zmath
11. M. Carro, A. Gogatishvili, J. Martin, and L. Pick, “Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces”, J. Operator Theory, 59:2 (2008), 309–332  mathscinet  zmath
12. V. D. Stepanov, “On spaces associated with weighted Cesàro and Copson spaces”, Mat. Zametki, 111:3 (2022), 443–450  mathnet  crossref  mathscinet  zmath; English transl. in Math. Notes, 111:3 (2022), 470–477  crossref
13. E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96:2 (1990), 145–158  crossref  mathscinet  zmath
14. A. Gogatishvili and V. D. Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions”, Uspekhi Mat. Nauk, 68:4(412) (2013), 3–68  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 68:4 (2013), 597–664  crossref  adsnasa
15. V. D. Stepanov, “The weighted Hardy's inequality for nonincreasing functions”, Trans. Amer. Math. Soc., 338:1 (1993), 173–186  crossref  mathscinet  zmath
16. G. Sinnamon, “Hardy's inequality and monotonicity”, Function spaces, differential operators and nonlinear analysis (Milovy 2004), Math. Inst. Acad. Sci. Czech Republ., Prague, 2005, 292–310
17. S. V. Astashkin and L. Maligranda, “Structure of Cesàro function spaces”, Indag. Math. (N. S.), 20:3 (2009), 329–379  crossref  mathscinet  zmath
18. M. L. Goldman and P. P. Zabreiko, “Optimal reconstruction of a Banach function space from a cone of nonnegative functions”, Function spaces and related problems of analysis, Tr. Mat. Inst. Steklova, 284, MAIK Nauka/Interperiodica, Moscow, 2014, 142–156  mathnet  crossref  mathscinet  zmath; English transl. in Proc. Steklov Inst. Math., 284 (2014), 133–147  crossref
19. V. D. Stepanov, “On optimal Banach spaces containing a weight cone of monotone or quasiconcave functions”, Mat. Zametki, 98:6 (2015), 907–922  mathnet  crossref  mathscinet  zmath; English transl. in Math. Notes, 98:6 (2015), 957–970  crossref
20. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934, xii+314 pp.  mathscinet  zmath
21. D. V. Prokhorov, “On the associated spaces for altered Cesàro space”, Anal. Math., 48:4 (2022), 1169–1183  crossref  mathscinet
22. D. V. Prokhorov, “On the dual spaces for weighted altered Cesàro and Copson spaces”, J. Math. Anal. Appl., 514:2 (2022), 126325, 11 pp.  crossref  mathscinet  zmath
23. V. D. Stepanov, “On Cesàro and Copson type function spaces. Reflexivity”, J. Math. Anal. Appl., 507:1 (2022), 125764, 18 pp.  crossref  mathscinet  zmath
24. R. A. Adams, Sobolev spaces, Pure Appl. Math., 65, Academic Press, New York–London, 1975, xviii+268 pp.  mathscinet  zmath
25. S. L. Sobolev, Some applications of functional analysis in mathematical physics, 3rd ed., rev. and compl., Nauka, Moscow, 1988, 334 pp.  mathscinet  zmath; English transl. in Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991, viii+286 pp.  crossref  mathscinet  zmath
26. A. Kamińska and M. Żyluk, “Uniform convexity, reflexivity, superreflexivity and $B$ convexity of generalized Sobolev spaces $W^{1,\Phi}$”, J. Math. Anal. Appl., 509:1 (2022), 125925, 31 pp.  crossref  mathscinet  zmath
27. A. Kalybay and R. Oinarov, “Boundedness of Riemann–Liouville operator from weighted Sobolev space to weighted Lebesgue space”, Eurasian Math. J., 12:1 (2021), 39–48  mathnet  crossref  mathscinet  zmath
28. A. Kalybay and R. Oinarov, “Boundedness of Riemann–Liouville operator from weighted Sobolev space to weighted Lebesgue space for $1<q<p<\infty$”, Math. Inequal. Appl., 25:1 (2022), 17–26  crossref  mathscinet  zmath
29. A. Kalybay and R. Oinarov, “Kernel operators and their boundedness from weighted Sobolev space to weighted Lebesgue space”, Turkish J. Math., 43:1 (2019), 301–315  crossref  mathscinet  zmath
30. R. Oinarov, “Boundedness of integral operators in weighted Sobolev spaces”, Izv. Ross. Akad. Nauk Ser. Mat., 78:4 (2014), 207–223  mathnet  crossref  mathscinet  zmath; English transl. in Izv. Math., 78:4 (2014), 836–853  crossref  adsnasa
31. R. Oinarov, “Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space”, Complex Var. Elliptic Equ., 56:10-11 (2011), 1021–1038  crossref  mathscinet  zmath
32. A. A. Belyaev and A. A. Shkalikov, “Multipliers in spaces of Bessel potentials: the case of indices of nonnegative smoothness”, Mat. Zametki, 102:5 (2017), 684–699  mathnet  crossref  mathscinet  zmath; English transl. in Math. Notes, 102:5 (2017), 632–644  crossref
33. A. A. Belyaev and A. A. Shkalikov, “Multipliers in Bessel potential spaces with smoothness indices of different sign”, Algebra i Analiz, 30:2 (2018), 76–96  mathnet  mathscinet  zmath; English transl. in St. Petersburg Math. J., 30:2 (2019), 203–218  crossref
34. J.-G. Bak and A. A. Shkalikov, “Multipliers in dual Sobolev spaces and Schrödinger operators with distribution potentials”, Mat. Zametki, 71:5 (2002), 643–651  mathnet  crossref  mathscinet  zmath; English transl. in Math. Notes, 71:5 (2002), 587–594  crossref
35. R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc. (2), 48:1 (1993), 103–116  crossref  mathscinet  zmath
36. S. P. Eveson, V. D. Stepanov, and E. P. Ushakova, “A duality principle in weighted Sobolev spaces on the real line”, Math. Nachr., 288:8–9 (2015), 877–897  mathnet  crossref  mathscinet  zmath
37. A. Kufner, L.-E. Persson, and N. Samko, Weighted inequalities of Hardy type, 2nd ed., World Sci. Publ., Hackensack, NJ, 2017, xx+459 pp.  crossref  mathscinet  zmath
38. V. D. Stepanov and E. P. Ushakova, “On integral operators with variable limits of integration”, Function spaces, harmonic analysis, and differential equations, Trudy Mat. Inst. Steklova, 232, Nauka, MAIK Nauka/Inteperiodika, Moscow, 2001, 298–317  mathnet  mathscinet  zmath; English transl. in Proc. Steklov Inst. Math., 232 (2001), 290–309
39. G. Leoni, A first course in Sobolev spaces, Grad. Stud. Math., 105, Amer. Math. Soc., Providence, RI, 2009, xvi+607 pp.  crossref  mathscinet  zmath
40. K. I. Babenko, “On conjugate functions”, Dokl. Akad. Nauk SSSR, 62:2 (1948), 157–160 (Russian)  mathscinet  zmath
41. R. Hunt, B. Muckenhoupt, and R. Wheeden, “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251  crossref  mathscinet  zmath
42. M. T. Lacey, E. T. Sawyer, Chun-Yen Shen, and I. Uriarte-Tuero, “Two-weight inequality for the Hilbert transform: a real variable characterization. I”, Duke Math. J., 163:15 (2014), 2795–2820  crossref  mathscinet  zmath
43. M. T. Lacey, “Two-weight inequality for the {H}ilbert transform: a real variable characterization. II”, Duke Math. J., 163:15 (2014), 2821–2840  crossref  mathscinet  zmath
44. T. P. Hytönen, “The two-weight inequality for the Hilbert transform with general measures”, Proc. Lond. Math. Soc. (3), 117:3 (2018), 483–526  crossref  mathscinet  zmath
45. E. Liflyand, “Weighted estimates for the discrete Hilbert transform”, Methods of Fourier analysis and approximation theory, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2016, 59–69  crossref  mathscinet  zmath
46. V. D. Stepanov and S. Yu. Tikhonov, “Two power-weight inequalities for the Hilbert transform on the cones of monotone functions”, Complex Var. Elliptic Equ., 56:10–11 (2011), 1039–1047  crossref  mathscinet  zmath
47. V. D. Stepanov, “On the boundedness of the Hilbert transform from weighted Sobolev space to weighted Lebesgue space”, J. Fourier Anal. Appl., 28:3 (2022), 46, 17 pp.  crossref  mathscinet  zmath
48. A. M. Abylayeva and L.-E. Persson, “Hardy type inequalities and compactness of a class of integral operators with logarithmic singularities”, Math. Inequal. Appl., 21:1 (2018), 201–215  crossref  mathscinet  zmath
49. V. D. Stepanov and E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Inequal. Appl., 13:3 (2010), 449–510  crossref  mathscinet  zmath

Citation: V. D. Stepanov, E. P. Ushakova, “Strong and weak associativity of weighted Sobolev spaces of the first order”, Russian Math. Surveys, 78:1 (2023), 165–202
Citation in format AMSBIB
\Bibitem{SteUsh23}
\by V.~D.~Stepanov, E.~P.~Ushakova
\paper Strong and weak associativity of weighted Sobolev spaces of the first order
\jour Russian Math. Surveys
\yr 2023
\vol 78
\issue 1
\pages 165--202
\mathnet{http://mi.mathnet.ru//eng/rm10075}
\crossref{https://doi.org/10.4213/rm10075e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4634797}
\zmath{https://zbmath.org/?q=an:1534.46024}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023RuMaS..78..165S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001057003200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85171274522}
Linking options:
  • https://www.mathnet.ru/eng/rm10075
  • https://doi.org/10.4213/rm10075e
  • https://www.mathnet.ru/eng/rm/v78/i1/p167
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:474
    Russian version PDF:49
    English version PDF:99
    Russian version HTML:294
    English version HTML:125
    References:42
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024