Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2022, Volume 77, Issue 5, Pages 952–954
DOI: https://doi.org/10.4213/rm10071e
(Mi rm10071)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief Communications

Existence of dense subsystems with lacunarity property in orthogonal systems

I. V. Limonovaab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University
References:
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-265
Russian Science Foundation 21-11-00131
Theorems 1 and 2 were established at the Steklov International Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2022-265). The work on Theorem 3 was carried out in Lomonosov Moscow State University and supported by the Russian Science Foundation under grant no. 21-11-00131.
Received: 15.08.2022
Bibliographic databases:
Document Type: Article
MSC: 42A55
Language: English
Original paper language: Russian

Let $\Phi=\{\varphi_k\}_{k=1}^{N}$ be an orthogonal system of functions on a probability space $(X,\mu)$. Put $\langle N\rangle\equiv\{1,2,\dots, N\}$, and for $\Lambda\subset \langle N\rangle$ let $S_{\Lambda}$ be the operator defined by $S_{\Lambda}(\{a_k\}_{k\in\Lambda})= \sum_{k\in\Lambda}a_k\varphi_k(x)$. Put $\Phi_{\Lambda}=\{\varphi_k\}_{k\in\Lambda}$.

Let $\delta\in(0,1)$, and let $\{\xi_i(\omega)\}_{i=1}^N$ be a system of independent random variables on a probability space $(\Omega,\nu)$ such that $\xi_i(\omega)=0$ or 1 and $\mathsf{E}\xi_i=\delta$, $1\leqslant i\leqslant N$.

For $\omega\in\Omega$ set $\Lambda(\omega)\equiv\Lambda(\omega,N)\equiv \{i\in\langle N\rangle\colon\xi_i(\omega)=1\}$.

Below we consider the scale of Orlicz spaces $L_{\psi_{\alpha}}$, where $\alpha>0$,

$$ \begin{equation} \psi_{\alpha}(t)=t^2\,\frac{\ln^{\alpha}(e+|t|)}{\ln^{\alpha}(e+1/|t|)}\,,\text{ and } \|f\|_{\psi_{\alpha}}=\inf\biggl\{\lambda>0\colon \int_{X}\psi_{\alpha} \biggl(\frac{f(x)}{\lambda}\biggr)\,d\mu\leqslant 1\biggr\}. \end{equation} \tag{1} $$

In his fundamental work [1] Bourgain solved the problem of the existence of $p$-lacunary ($p>2$) subsystems of size $N^{2/p}$ in an arbitrary uniformly bounded orthogonal system $\{\varphi_k\}_{k=1}^N$. Using a modification of the method in [1] the following result was obtained in [2], Theorem 1.

Theorem A. Let $\alpha>0$ and $\rho>0$ be fixed, and let $\Phi=\{\varphi_k\}_{k=1}^N$ be an arbitrary orthogonal system with the property

$$ \begin{equation} \|\varphi_k\|_{L_{\infty}}\leqslant 1, \qquad k=1,2,\dots,N. \end{equation} \tag{2} $$
Then for a random set $\Lambda=\Lambda(\omega)$ generated by a set of random variables $\{\xi_i(\omega)\}_{i=1}^N$ such that $\mathsf{E}\xi_i=\delta=(\log_2 (N+3))^{-\rho}$, $1\leqslant i\leqslant N$, the inequality
$$ \begin{equation*} \|S_{\Lambda}: l_{\infty}(\Lambda) \to L_{\psi_{\alpha}}(X)\|\leqslant K(\alpha,\rho)|\Lambda|^{1/2}\bigl((\log_2 (N+3))^{\alpha/2-\rho/4}+1\bigr) \end{equation*} \notag $$
holds with probability greater than $1-C(\rho)N^{-9}$.

This note is a continuation of [2] (also see [3]). Theorem 2 below is a generalization of Theorem A to $S_{\Lambda}$ acting from the space $l_2(\Lambda)$ to $L_{\psi_{\alpha}}(X)$, and to functions $\varphi_k$ satisfying only the weaker condition $\|\varphi_k\|_{p}\leqslant 1$, $1 \leqslant k \leqslant N$, where $p>4$. As mentioned in [2], we cannot expect that for the Orlicz space generated by (1) a random subsystem with cardinality $N/(\log_2 N)^{\beta}$ (where $\beta$ is an arbitrarily large constant) is $\psi_{\alpha}$-lacunary (that is, such that the inequality $\|\sum_{k=1}^N a_k\varphi_k\|_{\psi_{\alpha}}\leqslant C\|\overline{a}\|_2$ holds for each $\overline{a}=\{a_k\}_{k=1}^N\in\mathbb{R}^N$), so even for large $\rho$ the inequality in Theorem 2 below contains a factor increasing with $N$.

Let $U_2(\Lambda)$ be vectors with Euclidean norm $1$ and supports in $\Lambda$ such that all their non-zero components have the same modulus:

$$ \begin{equation*} U_2(\Lambda)=\bigl\{{\overline{a}}=\{a_i\}_{i=1}^N\colon \operatorname{supp}(\overline{a})\subset \Lambda;\, |a_i|=|\operatorname{supp}(\overline{a})|^{-1/2} \text{ for } i\in\operatorname{supp}(\overline{a})\bigr\}, \end{equation*} \notag $$
where $\operatorname{supp}(\overline{a})= \{i\in\langle N\rangle\colon a_i\ne 0\}$. Let $W(\Lambda)$ denote the normed space (the discrete Lorentz space) with unit ball equal to the convex hull of the vectors in $U_2(\Lambda)$. Set $\beta=\max\{\alpha/2-\rho/4,1/4\}$.

Theorem 1. Let $\alpha>1/2$, $\rho>0$, and $p>4$. Then, given an arbitrary orthogonal system $\Phi=\{\varphi_k\}_{k=1}^N$ such that

$$ \begin{equation} \|\varphi_k\|_{L_{p}}\leqslant 1, \qquad k=1,2,\dots,N, \end{equation} \tag{3} $$
for a random set $\Lambda=\Lambda(\omega)$ generated by a set of random variables $\{\xi_i(\omega)\}_{i=1}^N$ such that $\mathsf{E}\xi_i=\delta=(\log_2 (N+3))^{-\rho}$, $1\leqslant i\leqslant N$, the inequality
$$ \begin{equation*} \|S_{\Lambda}\colon W(\Lambda) \to L_{\psi_{\alpha}}(X)\|\leqslant K(\alpha,\rho, p)(\log_2(N+3))^{\beta} \end{equation*} \notag $$
holds with probability greater than $1-C(\rho)N^{-9}$.

Remark 1. It follows from the proof of Theorem 1 that Theorem A also holds in the case when condition (2) is replaced by (3) (for $p>4$) and $K(\alpha,\rho)$ by $K(\alpha,\rho,p)$.

It follows from a comment to Lemma 3 in [4] that if $\overline{a}\in\mathbb{R}^N$ satisfies $\operatorname{supp}(\overline{a})\subset\Lambda$, then $\|\overline{a}\|_{W(\Lambda)}^2\leqslant C\|\overline{a}\|_2^2 \ln(|\Lambda|+3)$. Thus, Theorem 1 yields the following result.

Theorem 2. Let $\alpha>3/2$, $\rho>2$, and $p>4$. Then, given an arbitrary orthogonal system $\Phi=\{\varphi_k\}_{k=1}^N$ with property (3), for a random set $\Lambda=\Lambda(\omega)$ generated by a set $\{\xi_i(\omega)\}_{i=1}^N$ such that $\mathsf{E}\xi_i=\delta=(\log_2 (N+3))^{-\rho}$, $1\leqslant i\leqslant N$, the inequality

$$ \begin{equation*} \|S_{\Lambda}\colon l_2(\Lambda) \to L_{\psi_{\alpha}}(X)\|\leqslant K'(\alpha,\rho, p)(\log_2(N+3))^{\beta+1/2} \end{equation*} \notag $$
holds with probability greater than $1-C(\rho)N^{-9}$.

Consider the maximal partial sum operator $S_{\Phi}^*$ that, for $\{a_k\}_{k=1}^N\in\mathbb{R}^N$, is defined by $S_{\Phi}^*(\{a_k\}_{k=1}^N)(x)=\sup_{1\leqslant M\leqslant N} \bigl|\,\sum_{k=1}^M a_k\varphi_k(x)\bigr|$. It is well known (see [5]) that lacunarity enables one to improve estimates for the norm of $S_{\Phi}^*$. In [6] Balykbaev showed that for $\alpha>4$, given a $\psi_{\alpha}$-lacunary system, the maximal partial sum operator is bounded from $l_2^N$ to $L_{\psi_{\alpha}}(X)$ (and therefore, also to $L_2(X)$). It was shown in [2] that for $\rho>4$, in any orthogonal system $\{\varphi_k\}_{k=1}^N$ with property (2) we can find a subsystem $\Phi_{\Lambda}$ of $N/(\log_2(N+3))^{\rho}$ functions such that the estimate $\|S_{\Phi_{\Lambda}}^{*}\colon l_{\infty}(\Lambda) \to L_{2}(X)\|\leqslant C(\rho)\sqrt{|\Lambda|}$ holds. It turns out that for the subsystem $\Phi_{\Lambda}$ of the system $\Phi$ in Theorem 2 the norm of the maximal partial sum operator from $l_2(\Lambda)$ to $L_2(X)$ has a better estimate than the Menshov–Rademacher theorem guarantees.

Theorem 3. Given $\rho>2$ and any orthogonal system $\Phi=\{\varphi_k\}_{k=1}^N$ with property (3) for $p>4$, there exists $\Lambda\subset\langle N\rangle$, $|\Lambda|\geqslant N(\log_2(N+3))^{-\rho}$, such that

$$ \begin{equation*} \|S_{\Phi_{\Lambda}}^{*}\colon l_2(\Lambda) \to L_{2}(X)\|\leqslant \begin{cases} C(\rho,\varepsilon,p)(\log_2(N+3))^{3/2-\rho/4+\varepsilon},& 2<\rho\leqslant 3, \ \varepsilon>0, \\ C(\rho,p)(\log_2(N+3))^{3/4}, & \rho>3. \end{cases} \end{equation*} \notag $$


Bibliography

1. J. Bourgain, Acta Math., 162:3-4 (1989), 227–245  crossref  mathscinet  zmath
2. B. S. Kashin and I. V. Limonova, Tr. Mat. Inst. Steklova, 311 (2020), 164–182  mathnet  crossref  mathscinet  zmath; English transl. in Proc. Steklov Inst. Math., 311 (2020), 152–170  crossref
3. B. S. Kashin and I. V. Limonova, Uspekhi Mat. Nauk, 74:5(449) (2019), 187–188  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 74:5 (2019), 956–958  crossref  adsnasa
4. B. S. Kashin, Mat. Sb., 94(136):4(8) (1974), 540–550  mathnet  mathscinet  zmath; English transl. in Sb. Math., 23:4 (1974), 509–519  crossref
5. B. S. Kashin and A. A. Saakyan, Orthogonal series, 2nd augmented ed., Actuarial and Financial Center, Moscow, 1999, x+550 pp.  mathscinet  zmath; English transl. of 1st ed. Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp.  crossref  mathscinet  zmath
6. T. O. Balykbaev, A class of lacunary orthonormal systems, PhD thesis, Moscow State University, Moscow, 1986 (Russian)

Citation: I. V. Limonova, “Existence of dense subsystems with lacunarity property in orthogonal systems”, Russian Math. Surveys, 77:5 (2022), 952–954
Citation in format AMSBIB
\Bibitem{Lim22}
\by I.~V.~Limonova
\paper Existence of dense subsystems with lacunarity property in orthogonal systems
\jour Russian Math. Surveys
\yr 2022
\vol 77
\issue 5
\pages 952--954
\mathnet{http://mi.mathnet.ru//eng/rm10071}
\crossref{https://doi.org/10.4213/rm10071e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582592}
\zmath{https://zbmath.org/?q=an:1526.42010}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022RuMaS..77..952L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000992306600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85165886821}
Linking options:
  • https://www.mathnet.ru/eng/rm10071
  • https://doi.org/10.4213/rm10071e
  • https://www.mathnet.ru/eng/rm/v77/i5/p191
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:327
    Russian version PDF:35
    English version PDF:92
    Russian version HTML:180
    English version HTML:83
    References:59
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024