Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2019, Number 45, Pages 6–12
DOI: https://doi.org/10.17223/20710410/45/1
(Mi pdm666)
 

Theoretical Backgrounds of Applied Discrete Mathematics

Decidability of the restricted theories of a class of partial orders

A. Yu. Nikitin

Sobolev Institute of Mathematics, Omsk, Russia
References:
Abstract: Classical algebraic geometry studies the solution sets of algebraic equations over the fields of real and complex numbers. In the past 20 years, the so-called universal algebraic geometry, which studies systems of equations over arbitrary algebraic structures, has been actively developed. In this frameworks, universal and existential theories are very important, the prospect for constructing good algebraic geometry over algebraic systems depends on their complexity. In this paper, we prove that the existential and universal theories of the class of all finite orders are decidable.
Keywords: partially ordered set, poset, decidability of univarsal theory, decidability of existential theory, classes.
Funding agency Grant number
Russian Science Foundation 18-71-10028
Bibliographic databases:
Document Type: Article
UDC: 510.665
Language: Russian
Citation: A. Yu. Nikitin, “Decidability of the restricted theories of a class of partial orders”, Prikl. Diskr. Mat., 2019, no. 45, 6–12
Citation in format AMSBIB
\Bibitem{Nik19}
\by A.~Yu.~Nikitin
\paper Decidability of the restricted theories of a class of~partial orders
\jour Prikl. Diskr. Mat.
\yr 2019
\issue 45
\pages 6--12
\mathnet{http://mi.mathnet.ru/pdm666}
\crossref{https://doi.org/10.17223/20710410/45/1}
Linking options:
  • https://www.mathnet.ru/eng/pdm666
  • https://www.mathnet.ru/eng/pdm/y2019/i3/p6
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026