Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2024, Volume 13(31), Issue 2, Pages 49–62
DOI: https://doi.org/10.15393/j3.art.2024.15830
(Mi pa398)
 

A new characterization of \boldmath$\symbol{113}$-Chebyshev polynomials of the second kind

S. Jbeli

Université de Tunis El Manar, Campus Universitaire El Manar, Tunis, 2092, Tunisie. LR13ES06
References:
Abstract: In this work, we introduce the notion of $\mathcal{U}_{(q,\mu)}$-classical orthogonal polynomials, where $\mathcal{U}_{(q,\mu)}$ is the degree raising shift operator defined by $\mathcal{U}_{(q,\mu)}:=x(xH_q+q^{-1}I_{\mathcal{P}})+\mu H_q,$ where $\mu$ is a nonzero free parameter, $I_{\mathcal{P}}$ represents the identity operator on the space of polynomials $\mathcal{P}$, and $H_q$ is the $q$-derivative one. We show that the scaled $q$-Chebychev polynomials of the second kind ${\hat{U}}_{n}(x, q), n\geq0$, are the only $\mathcal{U}_{(q,\mu)}$-classical orthogonal polynomials.
Keywords: orthogonal $q$-polynomials, $q$-derivative operator, $q$-Chebyshev polynomials, raising operator.
Received: 11.03.2024
Revised: 26.05.2024
Accepted: 28.05.2024
Document Type: Article
UDC: 517.58
MSC: Primary 33C45; Secondary 42C05
Language: Russian
Citation: S. Jbeli, “A new characterization of \boldmath$\symbol{113}$-Chebyshev polynomials of the second kind”, Probl. Anal. Issues Anal., 13(31):2 (2024), 49–62
Citation in format AMSBIB
\Bibitem{Jbe24}
\by S.~Jbeli
\paper A new characterization of \boldmath$\symbol{113}$-Chebyshev polynomials of the second kind
\jour Probl. Anal. Issues Anal.
\yr 2024
\vol 13(31)
\issue 2
\pages 49--62
\mathnet{http://mi.mathnet.ru/pa398}
\crossref{https://doi.org/10.15393/j3.art.2024.15830}
Linking options:
  • https://www.mathnet.ru/eng/pa398
  • https://www.mathnet.ru/eng/pa/v31/i2/p49
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:31
    Full-text PDF :22
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024