|
A new characterization of \boldmath$\symbol{113}$-Chebyshev polynomials of the second kind
S. Jbeli Université de Tunis El Manar, Campus Universitaire El Manar, Tunis, 2092, Tunisie. LR13ES06
Abstract:
In this work, we introduce the notion of $\mathcal{U}_{(q,\mu)}$-classical orthogonal polynomials, where $\mathcal{U}_{(q,\mu)}$ is the degree raising shift operator defined by $\mathcal{U}_{(q,\mu)}:=x(xH_q+q^{-1}I_{\mathcal{P}})+\mu H_q,$ where $\mu$ is a nonzero free parameter, $I_{\mathcal{P}}$ represents the identity operator on the space of polynomials $\mathcal{P}$, and $H_q$ is the $q$-derivative one. We show that the scaled $q$-Chebychev polynomials of the second kind ${\hat{U}}_{n}(x, q), n\geq0$, are the only $\mathcal{U}_{(q,\mu)}$-classical orthogonal polynomials.
Keywords:
orthogonal $q$-polynomials, $q$-derivative operator, $q$-Chebyshev polynomials, raising operator.
Received: 11.03.2024 Revised: 26.05.2024 Accepted: 28.05.2024
Citation:
S. Jbeli, “A new characterization of \boldmath$\symbol{113}$-Chebyshev polynomials of the second kind”, Probl. Anal. Issues Anal., 13(31):2 (2024), 49–62
Linking options:
https://www.mathnet.ru/eng/pa398 https://www.mathnet.ru/eng/pa/v31/i2/p49
|
Statistics & downloads: |
Abstract page: | 31 | Full-text PDF : | 22 | References: | 12 |
|