Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2022, Volume 11(29), Issue 2, Pages 59–71
DOI: https://doi.org/10.15393/j3.art.2022.11010
(Mi pa352)
 

Analytic functions of infinite order in half-plane

K. G. Malyutina, M. V. Kabankoa, T. V. Shevtsovab

a Kursk State University, 33 Radischeva str., Kursk 305000, Russia
b Southwest State University, 50 Let Oktyabrya Street, 94, Kursk 305040, Russia
References:
Abstract: J. B. Meles (1979) considered entire functions with zeros restricted to a finite number of rays. In particular, it was proved that if $f$ is an entire function of infinite order with zeros restricted to a finite number of rays, then its lower order equals infinity. In this paper, we prove a similar result for a class of functions analytic in the upper half-plane. The analytic function $f$ in $\mathbb{C}_+=\{z:\Im z>0\}$ is called proper analytic if $\limsup\limits_{z\to t}\ln|f(z)|\leq 0$ for all real numbers $t\in\mathbb{R}$. The class of the proper analytic functions is denoted by $JA$. The full measure of a function $f\in JA$ is a positive measure, which justifies the term "proper analytic function". In this paper, we prove that if a function $f$ is the proper analytic function in the half-plane $\mathbb{C}_+$ of infinite order with zeros restricted to a finite number of rays $\mathbb{L}_k$ through the origin, then its lower order equals infinity.
Keywords: half-plane, proper analytic function, infinite order, lower order, Fourier coefficients, full measure.
Funding agency Grant number
Russian Science Foundation 22-21-00012
The work is supported by the Russian Science Foundation (project No 22-21-00012, https://rscf.ru/project/22-21-00012/).
Received: 10.11.2021
Revised: 03.05.2022
Accepted: 04.05.2022
Bibliographic databases:
Document Type: Article
UDC: 517.537
MSC: 30D35
Language: English
Citation: K. G. Malyutin, M. V. Kabanko, T. V. Shevtsova, “Analytic functions of infinite order in half-plane”, Probl. Anal. Issues Anal., 11(29):2 (2022), 59–71
Citation in format AMSBIB
\Bibitem{MalKabShe22}
\by K.~G.~Malyutin, M.~V.~Kabanko, T.~V.~Shevtsova
\paper Analytic functions of infinite order in half-plane
\jour Probl. Anal. Issues Anal.
\yr 2022
\vol 11(29)
\issue 2
\pages 59--71
\mathnet{http://mi.mathnet.ru/pa352}
\crossref{https://doi.org/10.15393/j3.art.2022.11010}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4459167}
Linking options:
  • https://www.mathnet.ru/eng/pa352
  • https://www.mathnet.ru/eng/pa/v29/i2/p59
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:92
    Full-text PDF :38
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024