Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2018, Volume 7(25), Issue 2, Pages 82–97
DOI: https://doi.org/10.15393/j3.art.2018.5190
(Mi pa249)
 

This article is cited in 1 scientific paper (total in 1 paper)

Reduced $p$-modulus, $p$-harmonic radius and $p$-harmonic Green's mappings

B. E. Levitskii

Kuban State University, 149 Stavropolskaya str., Krasnodar 350040, Russia
Full-text PDF (515 kB) Citations (1)
References:
Abstract: We consider the definitions and properties of the metric characteristics of the spatial domains previously introduced by the author, and their connection with the class of mappings, the particular case of which are the harmonic Green's mappings introduced by A. I. Janushauskas. In determining these mappings, the role of the harmonic Green's function is played by the $p$-harmonic Green's function of the $n$-dimensional region ($1<p<\infty$), the existence and properties of which are established by S. Kichenassamy and L. Veron. The properties of $p$-harmonic Green mappings established in the general case are analogous to the properties of harmonic Green's mappings ($p = 2$, $n = 3$). In particular, it is proved that the $p$-harmonic radius of the spatial domain has a geometric meaning analogous to the conformal radius of a plane domain.
Keywords: reduced $p$-modulus, $p$-harmonic inner radius, $p$-harmonic Green function, $p$-harmonic Green's mapping.
Received: 19.08.2018
Revised: 08.11.2018
Accepted: 12.11.2018
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: 31B15, 30C65, 58E20
Language: English
Citation: B. E. Levitskii, “Reduced $p$-modulus, $p$-harmonic radius and $p$-harmonic Green's mappings”, Probl. Anal. Issues Anal., 7(25):2 (2018), 82–97
Citation in format AMSBIB
\Bibitem{Lev18}
\by B.~E.~Levitskii
\paper Reduced $p$-modulus, $p$-harmonic radius and $p$-harmonic Green's mappings
\jour Probl. Anal. Issues Anal.
\yr 2018
\vol 7(25)
\issue 2
\pages 82--97
\mathnet{http://mi.mathnet.ru/pa249}
\crossref{https://doi.org/10.15393/j3.art.2018.5190}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454220100006}
\elib{https://elibrary.ru/item.asp?id=36744244}
Linking options:
  • https://www.mathnet.ru/eng/pa249
  • https://www.mathnet.ru/eng/pa/v25/i2/p82
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024