Russian Journal of Nonlinear Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Journal of Nonlinear Dynamics, 2024, Volume 20, Number 2, Pages 197–207
DOI: https://doi.org/10.20537/nd240401
(Mi nd889)
 

Nonlinear physics and mechanics

Description of Trajectories of an Evolution Operator Generated by Mosquito Population

Z. S. Boxonov

V. I. Romanovskiy Institute of Mathematics of Uzbek Academy of Sciences Tashkent International University of Financial Management and Technology, University st. 9, Tashkent, 100174 Uzbekistan
References:
Abstract: In this paper, we study discrete-time dynamical systems generated by the evolution operator of mosquito population. An invariant set is found and a Lyapunov function with respect to the operator is constructed in this set. Using the Lyapunov function, the global attraction of a fixed point is proved. Moreover, we give some biological interpretations of our results.
Keywords: Lyapunov function, fixed point, limit point, invariant set
Received: 10.11.2023
Accepted: 22.02.2024
Document Type: Article
MSC: 39A12, 92D25
Language: English
Citation: Z. S. Boxonov, “Description of Trajectories of an Evolution Operator Generated by Mosquito Population”, Rus. J. Nonlin. Dyn., 20:2 (2024), 197–207
Citation in format AMSBIB
\Bibitem{Box24}
\by Z. S. Boxonov
\paper Description of Trajectories of an Evolution Operator Generated by Mosquito Population
\jour Rus. J. Nonlin. Dyn.
\yr 2024
\vol 20
\issue 2
\pages 197--207
\mathnet{http://mi.mathnet.ru/nd889}
\crossref{https://doi.org/10.20537/nd240401}
Linking options:
  • https://www.mathnet.ru/eng/nd889
  • https://www.mathnet.ru/eng/nd/v20/i2/p197
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024