Abstract:
Within the framework of the nonstationary model with nonfixed field structure, we investigate the model of a 3-mm band gyroklystron with delayed feedback. It is shown that both chaotic and hyperchaotic generation regimes are possible in this system. The chaotic regime due to a Feigenbaum period-doubling cascade is characterized by one positive Lyapunov exponent. Further transition to hyperchaos is determined by the appearance of another positive exponent in the Lyapunov spectrum. The correlation dimension of the corresponding attractors reaches values of about 3.5.
The part of the work concerned with simulation of chaotic dynamics of the gyroklystron was supported by the RFBR, grant no. 16-02-00745. O. B. Isaeva acknowledges the support from the RSF, grant no. 17-12-01008, for the work involved in calculating the characteristics of chaotic signals.
Citation:
R. M. Rozental, O. B. Isaeva, N. S. Ginzburg, I. V. Zotova, A. S. Sergeev, A. G. Rozhnev, “Characteristics of Chaotic Regimes in a Space-distributed Gyroklystron Model with Delayed Feedback”, Nelin. Dinam., 14:2 (2018), 155–168
\Bibitem{RozIsaGin18}
\by R. M. Rozental, O. B. Isaeva, N. S. Ginzburg, I. V. Zotova, A. S. Sergeev, A. G. Rozhnev
\paper Characteristics of Chaotic Regimes in a Space-distributed Gyroklystron Model with Delayed Feedback
\jour Nelin. Dinam.
\yr 2018
\vol 14
\issue 2
\pages 155--168
\mathnet{http://mi.mathnet.ru/nd604}
\crossref{https://doi.org/10.20537/nd180201}
\elib{https://elibrary.ru/item.asp?id=35417122}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050104151}
Linking options:
https://www.mathnet.ru/eng/nd604
https://www.mathnet.ru/eng/nd/v14/i2/p155
This publication is cited in the following 2 articles:
A. E. Fedotov, R. M. Rozental, O. B. Isaeva, A. G. Rozhnev, “Chaos and hyperchaos in a Ka-band gyrotron”, IEEE Electron Device Lett., 42:7 (2021), 1073–1076
N. Stankevich, A. Kuznetsov, E. Popova, E. Seleznev, “Chaos and hyperchaos via secondary Neimark–Sacker bifurcation in a model of radiophysical generator”, Nonlinear Dyn., 97:4 (2019), 2355–2370