Processing math: 100%
Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2017, Volume 13, Number 4, Pages 477–504
DOI: https://doi.org/10.20537/nd1704003
(Mi nd580)
 

This article is cited in 13 scientific papers (total in 13 papers)

On the 75th birthday of A.P.Markeev

On periodic motions of a nonautonomous Hamiltonian system in one case of multiple parametric resonance

O. V. Kholostovaab

a Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi, Moscow Region, 141701, Russia
b Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993, Russia
References:
Abstract: The motion of a nonautonomous time-periodic two-degree-of-freedom Hamiltonian system in a neighborhood of an equilibrium point is considered. The Hamiltonian function of the system is supposed to depend on two parameters ε and α, with ε being small and the system being autonomous at ε=0. It is also supposed that for ε=0 and some values of α one of the frequencies of small linear oscillations of the system in the neighborhood of the equilibrium point is an integer or half-integer and the other is equal to zero, that is, the system exhibits a multiple parametric resonance. The case is considered where the rank of the matrix of equations of perturbed motion that are linearized at ε=0 in the neighborhood of the equilibrium point is equal to three. For sufficiently small but nonzero values of ε and for values of α close to the resonant ones, the question of existence, bifurcations, and stability (in the linear approximation) of the periodic motions of the system is solved. As an application, periodic motions of a symmetrical satellite in the neighborhood of its cylindrical precession in an orbit with small eccentricity are constructed for cases of the multiple resonances considered.
Keywords: Hamiltonian system, multiple parametric resonance, periodic motions, stability, cylindrical precession of a satellite.
Funding agency Grant number
Russian Science Foundation 14-21-00068
Received: 19.09.2017
Accepted: 07.11.2017
Bibliographic databases:
Document Type: Article
UDC: 531.36:521.1
Language: Russian
Citation: O. V. Kholostova, “On periodic motions of a nonautonomous Hamiltonian system in one case of multiple parametric resonance”, Nelin. Dinam., 13:4 (2017), 477–504
Citation in format AMSBIB
\Bibitem{Kho17}
\by O.~V.~Kholostova
\paper On periodic motions of a nonautonomous Hamiltonian system in one case of multiple parametric resonance
\jour Nelin. Dinam.
\yr 2017
\vol 13
\issue 4
\pages 477--504
\mathnet{http://mi.mathnet.ru/nd580}
\crossref{https://doi.org/10.20537/nd1704003}
\elib{https://elibrary.ru/item.asp?id=30780696}
Linking options:
  • https://www.mathnet.ru/eng/nd580
  • https://www.mathnet.ru/eng/nd/v13/i4/p477
  • This publication is cited in the following 13 articles:
    1. O. V. Kholostova, “O dvizhenii dinamicheski simmetrichnogo sputnika v odnom sluchae kratnogo parametricheskogo rezonansa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 34:4 (2024), 594–612  mathnet  crossref
    2. O. V. Kholostova, “On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in One Case of Integer Nonequal Frequencies”, Rus. J. Nonlin. Dyn., 19:4 (2023), 447–471  mathnet  crossref
    3. O. V. Kholostovaa, “On Nonlinear Oscillations of a Time-Periodic Hamiltonian System at a 2:1:1 Resonance”, Rus. J. Nonlin. Dyn., 18:4 (2022), 481–512  mathnet  crossref  mathscinet
    4. O. V. Kholostova, “On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in the Case of Two Identical Integer or Half-Integer Frequencies”, Rus. J. Nonlin. Dyn., 17:1 (2021), 77–102  mathnet  crossref  mathscinet
    5. M. G. Yumagulov, L. S. Ibragimova, A. S. Belova, “Perturbation theory methods in problem of parametric resonance for linear periodic Hamiltonian systems”, Ufa Math. J., 13:3 (2021), 174–190  mathnet  crossref  isi
    6. M. G. Yumagulov, L. S. Ibragimova, A. S. Belova, “First Approximation Formulas in the Problem of Perturbation of Definite and Indefinite Multipliers of Linear Hamiltonian Systems”, Lobachevskii J Math, 42:15 (2021), 3773  crossref
    7. A. P. Markeev, T. N. Chekhovskaya, “On Nonlinear Oscillations and Stability of Coupled Pendulums in the Case of a Multiple Resonance”, Rus. J. Nonlin. Dyn., 16:4 (2020), 607–623  mathnet  crossref  mathscinet
    8. O. V. Kholostova, “O dvizheniyakh blizkoi k avtonomnoi gamiltonovoi sistemy v sluchayakh dvukh nulevykh chastot”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:4 (2020), 672–695  mathnet  crossref
    9. Olga Kholostova, 2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB), 2020, 1  crossref
    10. Olga V. Kholostova, “On the Motions of One Near-Autonomous Hamiltonian System at a 1:1:1 Resonance”, Regul. Chaotic Dyn., 24:3 (2019), 235–265  mathnet  crossref
    11. O. V. Kholostova, “O kratnykh rezonansakh chetvertogo poryadka v neavtonomnoi gamiltonovoi sisteme s dvumya stepenyami svobody”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:2 (2019), 275–294  mathnet  crossref  elib
    12. V O. Kholostova, “On periodic motions of a nearly autonomous Hamiltonian system in the occurrence of double parametric resonance”, Mech. Sol., 54:2 (2019), 211–233  crossref  crossref  isi  elib  scopus
    13. A. I. Safonov, O. V. Kholostova, “O periodicheskikh dvizheniyakh simmetrichnogo sputnika na slaboellipticheskoi orbite v odnom sluchae kratnogo kombinatsionnogo rezonansa tretego i chetvertogo poryadkov”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:3 (2018), 373–394  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:306
    Full-text PDF :89
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025