Abstract:
The motion of a nonautonomous time-periodic two-degree-of-freedom Hamiltonian system in a neighborhood of an equilibrium point is considered. The Hamiltonian function of the system is supposed to depend on two parameters ε and α, with ε being small and the system being autonomous at ε=0. It is also supposed that for ε=0 and some values of α one of the frequencies of small linear oscillations of the system in the neighborhood of the equilibrium point is an integer or half-integer and the other is equal to zero, that is, the system exhibits a multiple parametric resonance. The case is considered where the rank of the matrix of equations of perturbed motion that are linearized at ε=0 in the neighborhood of the equilibrium point is equal to three. For sufficiently small but nonzero values of ε and for values of α close to the resonant ones, the question of existence, bifurcations, and stability (in the linear approximation) of the periodic motions of the system is solved. As an application, periodic motions of a symmetrical satellite in the neighborhood of its cylindrical precession in an orbit with small eccentricity are constructed for cases of the multiple resonances considered.
Keywords:
Hamiltonian system, multiple parametric resonance, periodic motions, stability, cylindrical precession of a satellite.
Citation:
O. V. Kholostova, “On periodic motions of a nonautonomous Hamiltonian system in one case of multiple parametric resonance”, Nelin. Dinam., 13:4 (2017), 477–504
\Bibitem{Kho17}
\by O.~V.~Kholostova
\paper On periodic motions of a nonautonomous Hamiltonian system in one case of multiple parametric resonance
\jour Nelin. Dinam.
\yr 2017
\vol 13
\issue 4
\pages 477--504
\mathnet{http://mi.mathnet.ru/nd580}
\crossref{https://doi.org/10.20537/nd1704003}
\elib{https://elibrary.ru/item.asp?id=30780696}
Linking options:
https://www.mathnet.ru/eng/nd580
https://www.mathnet.ru/eng/nd/v13/i4/p477
This publication is cited in the following 13 articles:
O. V. Kholostova, “O dvizhenii dinamicheski simmetrichnogo sputnika v odnom sluchae kratnogo parametricheskogo rezonansa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 34:4 (2024), 594–612
O. V. Kholostova, “On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in One Case of Integer Nonequal Frequencies”, Rus. J. Nonlin. Dyn., 19:4 (2023), 447–471
O. V. Kholostovaa, “On Nonlinear Oscillations of a Time-Periodic
Hamiltonian System at a 2:1:1 Resonance”, Rus. J. Nonlin. Dyn., 18:4 (2022), 481–512
O. V. Kholostova, “On Nonlinear Oscillations of a Near-Autonomous
Hamiltonian System in the Case of Two Identical
Integer or Half-Integer Frequencies”, Rus. J. Nonlin. Dyn., 17:1 (2021), 77–102
M. G. Yumagulov, L. S. Ibragimova, A. S. Belova, “Perturbation theory methods in problem of parametric resonance for linear periodic Hamiltonian systems”, Ufa Math. J., 13:3 (2021), 174–190
M. G. Yumagulov, L. S. Ibragimova, A. S. Belova, “First Approximation Formulas in the Problem of Perturbation of Definite and Indefinite Multipliers of Linear Hamiltonian Systems”, Lobachevskii J Math, 42:15 (2021), 3773
A. P. Markeev, T. N. Chekhovskaya, “On Nonlinear Oscillations and Stability of Coupled Pendulums in the Case of a Multiple Resonance”, Rus. J. Nonlin. Dyn., 16:4 (2020), 607–623
O. V. Kholostova, “O dvizheniyakh blizkoi k avtonomnoi gamiltonovoi sistemy v sluchayakh dvukh nulevykh chastot”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:4 (2020), 672–695
Olga Kholostova, 2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB), 2020, 1
Olga V. Kholostova, “On the Motions of One Near-Autonomous Hamiltonian System at a 1:1:1 Resonance”, Regul. Chaotic Dyn., 24:3 (2019), 235–265
O. V. Kholostova, “O kratnykh rezonansakh chetvertogo poryadka v neavtonomnoi gamiltonovoi sisteme s dvumya stepenyami svobody”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:2 (2019), 275–294
V O. Kholostova, “On periodic motions of a nearly autonomous Hamiltonian system in the occurrence of double parametric resonance”, Mech. Sol., 54:2 (2019), 211–233
A. I. Safonov, O. V. Kholostova, “O periodicheskikh dvizheniyakh simmetrichnogo sputnika na slaboellipticheskoi orbite v odnom sluchae kratnogo kombinatsionnogo rezonansa tretego i chetvertogo poryadkov”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:3 (2018), 373–394