Abstract:
In this historical review we describe in detail the main stages of the development of nonholonomic mechanics starting from the work of Earnshaw and Ferrers to the monograph of Yu.I. Neimark and N.A. Fufaev. In the appendix to this review we discuss the d’Alembert–Lagrange principle in nonholonomic mechanics and permutation relations.
Citation:
A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Historical and critical review of the development of nonholonomic mechanics: the classical period”, Nelin. Dinam., 12:3 (2016), 385–411; Regular and Chaotic Dynamics, 21:4 (2016), 455–476
This publication is cited in the following 22 articles:
Víctor M. Jiménez, Manuel de León, “The nonholonomic bracket on contact mechanical systems”, Journal of Geometry and Physics, 213 (2025), 105484
Nivaldo A. Lemos, “Complete inequivalence of nonholonomic and vakonomic mechanics”, Acta Mech, 233:1 (2022), 47
Alfredo Delgado-Spindola, Victor Santibanez, Eusebio Bugarin, Juan Antonio Rojas-Quintero, 2021 9th International Conference on Systems and Control (ICSC), 2021, 178
Francisco Jesús Arjonilla García, Yuichi Kobayashi, “Supervised learning of mapping from sensor space to chained form for unknown non-holonomic driftless systems”, IR, 48:5 (2021), 710
Ivan A. Bizyaev, Ivan S. Mamaev, “Separatrix splitting and nonintegrability in the nonholonomic rolling of a generalized Chaplygin sphere”, International Journal of Non-Linear Mechanics, 126 (2020), 103550
Vaughn Gzenda, Vakhtang Putkaradze, “Integrability and Chaos in Figure Skating”, J Nonlinear Sci, 30:3 (2020), 831
Elizaveta M. Artemova, Alexander A. Kilin, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1
Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236
Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “Comment on “Confining rigid balls by mimicking quadrupole ion trapping” [Am. J. Phys. 85, 821 (2017)]”, American Journal of Physics, 87:11 (2019), 935
Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582
Ivan A. Bizyaev, Alexey V. Borisov, Sergey P. Kuznetsov, “The Chaplygin sleigh with friction moving due to periodic oscillations of an internal mass”, Nonlinear Dyn, 95:1 (2019), 699
Yi Zhang, Xue Tian, “Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem”, Physics Letters A, 383:8 (2019), 691
Vakhtang Putkaradze, Stuart Rogers, “On the dynamics of a rolling ball actuated by internal point masses”, Meccanica, 53:15 (2018), 3839
I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Dynamics of the Chaplygin ball on a rotating plane”, Russ. J. Math. Phys., 25:4 (2018), 423
A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840
A. V. Borisov, A. A. Kilin, I. S. Mamaev, “The Hamilton principle and the rolling motion of a symmetric ball”, Dokl. Math., 62:6 (2017), 314–317
Ivan A. Bizyaev, Alexey V. Borisov, Sergey P. Kuznetsov, “Chaplygin sleigh with periodically oscillating internal mass”, EPL, 119:6 (2017), 60008–7
A.V. BORISOV, A.A. Kilin, I. S. Mamaev, “PRINTsIP GAMILTONA I KAChENIE SIMMETRIChNOGO ShARA, “Doklady Akademii nauk””, Doklady Akademii Nauk, 2017, no. 5, 558
Alexey V. Borisov, Sergey P. Kuznetsov, “Regular and Chaotic Motions of a Chaplygin Sleigh under Periodic Pulsed Torque Impacts”, Regul. Chaotic Dyn., 21:7 (2016), 792–803
Alexander P. Ivanov, “On Final Motions of a Chaplygin Ball on a Rough Plane”, Regul. Chaotic Dyn., 21:7 (2016), 804–810