Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2016, Volume 12, Number 3, Pages 385–411
DOI: https://doi.org/10.20537/nd1603007
(Mi nd534)
 

This article is cited in 22 scientific papers (total in 22 papers)

Translated papers

Historical and critical review of the development of nonholonomic mechanics: the classical period

A. V. Borisova, I. S. Mamaevbc, I. A. Bizyaevc

a Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow, 141700, Russia
b Institute of Mathematics and Mechanics of the Ural Branch of RAS, ul. S.Kovalevskoi 16, Ekaterinburg, 620990, Russia
c Udmurt State University, Universitetskaya 1, Izhevsk, 426034, Russia
References:
Abstract: In this historical review we describe in detail the main stages of the development of nonholonomic mechanics starting from the work of Earnshaw and Ferrers to the monograph of Yu.I. Neimark and N.A. Fufaev. In the appendix to this review we discuss the d’Alembert–Lagrange principle in nonholonomic mechanics and permutation relations.
Keywords: nonholonomic mechanics, nonholonomic constraint, d’Alembert–Lagrange principle, permutation relations.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations
Russian Foundation for Basic Research 15-08-09261-а
15-38-20879 мол_а_вед
Received: 05.05.2016
Accepted: 22.06.2016
English version:
Regular and Chaotic Dynamics, 2016, Volume 21, Issue 4, Pages 455–476
DOI: https://doi.org/10.1134/S1560354716040055
Bibliographic databases:
Document Type: Article
UDC: 517.925
MSC: 37J60, 01A05
Language: Russian
Citation: A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Historical and critical review of the development of nonholonomic mechanics: the classical period”, Nelin. Dinam., 12:3 (2016), 385–411; Regular and Chaotic Dynamics, 21:4 (2016), 455–476
Citation in format AMSBIB
\Bibitem{BorMamBiz16}
\by A.~V.~Borisov, I.~S.~Mamaev, I.~A.~Bizyaev
\paper Historical and critical review of the development of nonholonomic mechanics: the classical period
\jour Nelin. Dinam.
\yr 2016
\vol 12
\issue 3
\pages 385--411
\mathnet{http://mi.mathnet.ru/nd534}
\crossref{https://doi.org/10.20537/nd1603007}
\zmath{https://zbmath.org/?q=an:1352.37172}
\elib{https://elibrary.ru/item.asp?id=27328721}
\transl
\jour Regular and Chaotic Dynamics
\yr 2016
\vol 21
\issue 4
\pages 455--476
\crossref{https://doi.org/10.1134/S1560354716040055}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980398123}
Linking options:
  • https://www.mathnet.ru/eng/nd534
  • https://www.mathnet.ru/eng/nd/v12/i3/p385
    Translation
    This publication is cited in the following 22 articles:
    1. Víctor M. Jiménez, Manuel de León, “The nonholonomic bracket on contact mechanical systems”, Journal of Geometry and Physics, 213 (2025), 105484  crossref
    2. Nivaldo A. Lemos, “Complete inequivalence of nonholonomic and vakonomic mechanics”, Acta Mech, 233:1 (2022), 47  crossref
    3. Alfredo Delgado-Spindola, Victor Santibanez, Eusebio Bugarin, Juan Antonio Rojas-Quintero, 2021 9th International Conference on Systems and Control (ICSC), 2021, 178  crossref
    4. Francisco Jesús Arjonilla García, Yuichi Kobayashi, “Supervised learning of mapping from sensor space to chained form for unknown non-holonomic driftless systems”, IR, 48:5 (2021), 710  crossref
    5. Ivan A. Bizyaev, Ivan S. Mamaev, “Separatrix splitting and nonintegrability in the nonholonomic rolling of a generalized Chaplygin sphere”, International Journal of Non-Linear Mechanics, 126 (2020), 103550  crossref
    6. Vaughn Gzenda, Vakhtang Putkaradze, “Integrability and Chaos in Figure Skating”, J Nonlinear Sci, 30:3 (2020), 831  crossref
    7. Elizaveta M. Artemova, Alexander A. Kilin, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1  crossref
    8. Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236  mathnet  crossref  isi  scopus
    9. Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “Comment on “Confining rigid balls by mimicking quadrupole ion trapping” [Am. J. Phys. 85, 821 (2017)]”, American Journal of Physics, 87:11 (2019), 935  crossref
    10. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582  mathnet  crossref  isi  scopus
    11. Ivan A. Bizyaev, Alexey V. Borisov, Sergey P. Kuznetsov, “The Chaplygin sleigh with friction moving due to periodic oscillations of an internal mass”, Nonlinear Dyn, 95:1 (2019), 699  crossref
    12. Yi Zhang, Xue Tian, “Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem”, Physics Letters A, 383:8 (2019), 691  crossref
    13. Vakhtang Putkaradze, Stuart Rogers, “On the dynamics of a rolling ball actuated by internal point masses”, Meccanica, 53:15 (2018), 3839  crossref
    14. I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Dynamics of the Chaplygin ball on a rotating plane”, Russ. J. Math. Phys., 25:4 (2018), 423  crossref
    15. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  mathnet  crossref  crossref  isi  scopus
    16. A. V. Borisov, A. A. Kilin, I. S. Mamaev, “The Hamilton principle and the rolling motion of a symmetric ball”, Dokl. Math., 62:6 (2017), 314–317  mathnet  mathnet  crossref  crossref  isi  scopus
    17. Ivan A. Bizyaev, Alexey V. Borisov, Sergey P. Kuznetsov, “Chaplygin sleigh with periodically oscillating internal mass”, EPL, 119:6 (2017), 60008–7  mathnet  crossref  isi
    18. A.V. BORISOV, A.A. Kilin, I. S. Mamaev, “PRINTsIP GAMILTONA I KAChENIE SIMMETRIChNOGO ShARA, “Doklady Akademii nauk””, Doklady Akademii Nauk, 2017, no. 5, 558  crossref
    19. Alexey V. Borisov, Sergey P. Kuznetsov, “Regular and Chaotic Motions of a Chaplygin Sleigh under Periodic Pulsed Torque Impacts”, Regul. Chaotic Dyn., 21:7 (2016), 792–803  mathnet  crossref  isi  scopus
    20. Alexander P. Ivanov, “On Final Motions of a Chaplygin Ball on a Rough Plane”, Regul. Chaotic Dyn., 21:7 (2016), 804–810  mathnet  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:500
    Full-text PDF :143
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025