Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2005, Volume 1, Number 1, Pages 53–67 (Mi nd190)  

Separation of variables on non-hiperelliptic curve

V. G. Marikhin, V. V. Sokolov

L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
Abstract: A 8-parametric pair of commuting Hamiltonians of two degrees of freedom, quadratic in moments and coefficients depending only on coordinates is constructed. The Schottky-Manakov and the Clebsch spinning tops are particular cases of this model. The action function as an integral on a non-hyperelliptic curve of genus 4 is found.
Keywords: Action function, separation of variables, covering of an elliptic curve.
Document Type: Article
UDC: 531.3
Language: Russian
Citation: V. G. Marikhin, V. V. Sokolov, “Separation of variables on non-hiperelliptic curve”, Nelin. Dinam., 1:1 (2005), 53–67
Citation in format AMSBIB
\Bibitem{MarSok05}
\by V.~G.~Marikhin, V.~V.~Sokolov
\paper Separation of variables on non-hiperelliptic curve
\jour Nelin. Dinam.
\yr 2005
\vol 1
\issue 1
\pages 53--67
\mathnet{http://mi.mathnet.ru/nd190}
Linking options:
  • https://www.mathnet.ru/eng/nd190
  • https://www.mathnet.ru/eng/nd/v1/i1/p53
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:236
    Full-text PDF :197
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024