Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2005, Volume 1, Number 1, Pages 23–31 (Mi nd188)  

Iso-energetic manifolds and motion possibility regions of rigid body in double force field

D. B. Zot'eva, M. P. Kharlamovb

a Volgograd Technical University
b Volgograd Academy of Public Administration
Abstract: The motion of a rigid body about a fixed point in a double constant force field is governed by a Hamiltonian system with three degrees of freedom. We consider the general case when there are no one-dimensional symmetry groups. We point out the critical points of the Hamilton function and corresponding critical values of energy. Using the Morse theory, we have found the smooth type of non-degenerate five-dimensional iso-energetic levels and find their projections onto the configuration space, diffeomorphic to a three-dimensional projective space. The analogs of classical motion possibility regions, the projections of iso-energetic manifolds onto one of the Poisson spheres, are studied.
Keywords: rigid body, double constant force fields, iso-energetic manifolds, Poisson spheres.
Document Type: Article
UDC: 531.38+517
Language: Russian
Citation: D. B. Zot'ev, M. P. Kharlamov, “Iso-energetic manifolds and motion possibility regions of rigid body in double force field”, Nelin. Dinam., 1:1 (2005), 23–31
Citation in format AMSBIB
\Bibitem{ZotKha05}
\by D.~B.~Zot'ev, M.~P.~Kharlamov
\paper Iso-energetic manifolds and motion possibility regions of rigid body in double force field
\jour Nelin. Dinam.
\yr 2005
\vol 1
\issue 1
\pages 23--31
\mathnet{http://mi.mathnet.ru/nd188}
Linking options:
  • https://www.mathnet.ru/eng/nd188
  • https://www.mathnet.ru/eng/nd/v1/i1/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:214
    Full-text PDF :90
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024