Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1980, Volume 37, Issue 4, Pages 559–579
DOI: https://doi.org/10.1070/SM1980v037n04ABEH002095
(Mi sm2411)
 

This article is cited in 26 scientific papers (total in 26 papers)

Potential theory for the equation of small oscillations of a rotating fluid

B. V. Kapitonov
References:
Abstract: With the aid of potential theory the classical solvability of initial-boundary value problems is proved for the equation
2t2(2ux21+2ux22+2ux23)+2ux23=0
in a bounded domain of the space Ω, and also in the complement of this domain. For the first boundary value problem a method of obtaining estimates of solutions in uniform norms is established, with an indication of the explicit dependence of the constants on the time exhibited.
Bibliography: 6 titles.
Received: 08.01.1979
Bibliographic databases:
UDC: 517.946
MSC: Primary 31B20, 76U05; Secondary 35B45
Language: English
Original paper language: Russian
Citation: B. V. Kapitonov, “Potential theory for the equation of small oscillations of a rotating fluid”, Math. USSR-Sb., 37:4 (1980), 559–579
Citation in format AMSBIB
\Bibitem{Kap79}
\by B.~V.~Kapitonov
\paper Potential theory for the equation of small oscillations of a~rotating fluid
\jour Math. USSR-Sb.
\yr 1980
\vol 37
\issue 4
\pages 559--579
\mathnet{http://mi.mathnet.ru/eng/sm2411}
\crossref{https://doi.org/10.1070/SM1980v037n04ABEH002095}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=545056}
\zmath{https://zbmath.org/?q=an:0452.35010|0439.35003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980LA35500005}
Linking options:
  • https://www.mathnet.ru/eng/sm2411
  • https://doi.org/10.1070/SM1980v037n04ABEH002095
  • https://www.mathnet.ru/eng/sm/v151/i4/p607
  • This publication is cited in the following 26 articles:
    1. Bruno Voisin, “Added mass of oscillating bodies in stratified fluids”, J. Fluid Mech., 987 (2024)  crossref
    2. M. O. Korpusov, R. S. Shafir, A. K. Matveeva, “Numerical Diagnostics of Solution Blow-Up in a Thermoelectric Semiconductor Model”, Comput. Math. and Math. Phys., 64:7 (2024), 1595  crossref
    3. M. O. Korpusov, A. K. Matveeva, “On critical exponents for weak solutions of the Cauchy problem for a $(2+1)$-dimensional nonlinear composite-type equation with gradient nonlinearity”, Comput. Math. Math. Phys., 63:6 (2023), 1070–1084  mathnet  mathnet  crossref  crossref
    4. M. O. Korpusov, R. S. Shafir, “On Cauchy problems for nonlinear Sobolev equations in ferroelectricity theory”, Comput. Math. Math. Phys., 62:12 (2022), 2091–2111  mathnet  mathnet  crossref  crossref
    5. R. S. Shafir, “Solvability and Blow-Up of Weak Solutions of Cauchy Problems for $(3+1)$-Dimensional Equations of Drift Waves in a Plasma”, Math. Notes, 111:3 (2022), 484–497  mathnet  crossref  crossref  mathscinet
    6. M. O. Korpusov, R. S. Shafir, “On the blowup of solutions of the Cauchy problem for nonlinear equations of ferroelectricity theory”, Theoret. and Math. Phys., 212:3 (2022), 1169–1180  mathnet  crossref  crossref  mathscinet  adsnasa
    7. M. O. Korpusov, R. S. Shafir, “Blow-up of weak solutions of the Cauchy problem for $(3+1)$-dimensional equation of plasma drift waves”, Comput. Math. Math. Phys., 62:1 (2022), 117–149  mathnet  mathnet  crossref  crossref  isi  scopus
    8. M. O. Korpusov, E. A. Ovsyannikov, “Local solvability, blow-up, and Hölder regularity of solutions to some Cauchy problems for nonlinear plasma wave equations: I. Green formulas”, Comput. Math. Math. Phys., 62:10 (2022), 1609–1631  mathnet  mathnet  crossref  crossref
    9. M. O. Korpusov, A. K. Matveeva, “On critical exponents for weak solutions of the Cauchy problem for a non-linear equation of composite type”, Izv. Math., 85:4 (2021), 705–744  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    10. M. O. Korpusov, D. K. Yablochkin, “Potential theory and Schauder estimate in Hölder spaces for $(3 + 1)$-dimensional Benjamin–Bona–Mahoney–Burgers equation”, Comput. Math. Math. Phys., 61:8 (2021), 1289–1314  mathnet  mathnet  crossref  crossref  isi  scopus
    11. Bruno Voisin, “Boundary integrals for oscillating bodies in stratified fluids”, J. Fluid Mech., 927 (2021)  crossref
    12. M.O. Korpusov, A.A. Panin, “On the blow-up of the solution and on the local and global solvability of the Cauchy problem for a nonlinear equation in Hölder spaces”, Journal of Mathematical Analysis and Applications, 504:2 (2021), 125469  crossref
    13. M. O. Korpusov, E. A. Ovsyannikov, “Blow-up instability in non-linear wave models with distributed parameters”, Izv. Math., 84:3 (2020), 449–501  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    14. M. O. Korpusov, G. I. Shlyapugin, “O razrushenii reshenii zadach Koshi dlya odnogo klassa nelineinykh uravnenii teorii ferritov”, Materialy Vserossiiskoi nauchnoi konferentsii «Differentsialnye uravneniya i ikh prilozheniya», posvyaschennoi 85-letiyu professora M. T. Terekhina. Ryazanskii gosudarstvennyi universitet im. S.A. Esenina, Ryazan, 17–18 maya 2019 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 185, VINITI RAN, M., 2020, 79–131  mathnet  crossref
    15. Bruno Voisin, “Near-field internal wave beams in two dimensions”, J. Fluid Mech., 900 (2020)  crossref
    16. M. O. Korpusov, D. K. Yablochkin, “Potential theory for a nonlinear equation of the Benjamin–Bona–Mahoney–Burgers type”, Comput. Math. Math. Phys., 59:11 (2019), 1848–1880  mathnet  crossref  crossref  isi  elib
    17. E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, “Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations”, Russian Math. Surveys, 64:3 (2009), 399–468  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    18. A. B. Alshin, M. A. Istomina, “Solvability of the Neumann problem for a Sobolev pseudoparabolic equation”, Comput. Math. Math. Phys., 46:7 (2006), 1207–1215  mathnet  crossref  mathscinet  elib
    19. Al'shin A., Al'shina E., “Numerical Solution of Initial-Boundary-Value Problems for Sobolev Equations Using the Dynamic-Potential Method”, J. Commun. Technol. Electron., 50:2 (2005), 213–219  isi
    20. P.A. Krutitskii, “Initial–boundary value problem for an equation of internal gravity waves in a 3-D multiply connected domain with Dirichlet boundary condition”, Advances in Mathematics, 177:2 (2003), 208  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:637
    Russian version PDF:192
    English version PDF:26
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025