Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2023, Volume 35, Number 7, Pages 83–96
DOI: https://doi.org/10.20948/mm-2023-07-06
(Mi mm4480)
 

This article is cited in 4 scientific papers (total in 4 papers)

On accuracy of finite-difference schemes in calculations of centered rarefaction waves

O. A. Kovyrkina, V. V. Ostapenko

Lavrentyev Institute of Hydrodynamics Siberian Branch of the RAS, Novosibirsk
Full-text PDF (387 kB) Citations (4)
References:
Abstract: We carried out a comparative accuracy analysis of three finite-difference schemes (the first order UpWind, the second order TVD and the third order in time WENO5) when calculating for the nonlinear transport equation the Cauchy problem with piecewise linear discontinuous periodic initial data. We showed that in the case of stable initial discontinuities, when a sequence of shocks is formed, the convergence order of all three schemes between shocks coincides with their formal accuracy. In the case of unstable initial discontinuities, when a sequence of centered rarefaction waves is formed, all three schemes have the first order of convergence within these waves. We obtained an explicit formula for the disbalances of difference solutions in a centered rarefaction wave. This formula is agrees well with numerical calculations in the case of high accuracy schemes, does not depend on the scheme type and is determined by the error in approximating the initial data in the vicinity of the unstable strong discontinuity.
Keywords: nonlinear transport equation, shock waves, centered rarefaction waves, shock-capturing schemes.
Funding agency Grant number
Russian Science Foundation 22-11-00060
Russian Foundation for Basic Research 21-51-53012
Received: 10.11.2022
Revised: 13.03.2023
Accepted: 17.04.2023
English version:
Mathematical Models and Computer Simulations, 2023, Volume 15, Issue 1 suppl., Pages S54–S63
DOI: https://doi.org/10.1134/S2070048223070104
Document Type: Article
Language: Russian
Citation: O. A. Kovyrkina, V. V. Ostapenko, “On accuracy of finite-difference schemes in calculations of centered rarefaction waves”, Mat. Model., 35:7 (2023), 83–96; Math. Models Comput. Simul., 15:1 suppl. (2023), S54–S63
Citation in format AMSBIB
\Bibitem{KovOst23}
\by O.~A.~Kovyrkina, V.~V.~Ostapenko
\paper On accuracy of finite-difference schemes in calculations of centered rarefaction waves
\jour Mat. Model.
\yr 2023
\vol 35
\issue 7
\pages 83--96
\mathnet{http://mi.mathnet.ru/mm4480}
\crossref{https://doi.org/10.20948/mm-2023-07-06}
\transl
\jour Math. Models Comput. Simul.
\yr 2023
\vol 15
\issue 1 suppl.
\pages S54--S63
\crossref{https://doi.org/10.1134/S2070048223070104}
Linking options:
  • https://www.mathnet.ru/eng/mm4480
  • https://www.mathnet.ru/eng/mm/v35/i7/p83
  • This publication is cited in the following 4 articles:
    1. M. E. Ladonkina, V. V. Ostapenko, V. F. Tishkin, N. A. Khandeeva, “O tochnosti razryvnogo metoda Galerkina vnutri tsentrirovannykh voln razrezheniya i v oblastyakh ikh vliyaniya”, Matem. modelirovanie, 37:1 (2025), 113–130  mathnet  crossref
    2. V. V. Ostapenko, E. I. Polunina, N. A. Khandeeva, “On the Accuracy of Calculating Invariants in Centered Rarefaction Waves and in Their Influence Area”, Dokl. Math., 2024  crossref
    3. V. V. Ostapenko, E. I. Polunina, N. A. Khandeeva, “On the accuracy of calculating invariants in centered rarefaction waves and in their influence area”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 518:1 (2024), 65  crossref
    4. V. V. Ostapenko, E. I. Polunina, N. A. Khandeeva, “O povyshenii tochnosti raznostnykh skhem pri raschete tsentrirovannykh voln razrezheniya”, Matem. modelirovanie, 36:6 (2024), 119–134  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :24
    References:40
    First page:10
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025