Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2020, Volume 32, Number 11, Pages 59–69
DOI: https://doi.org/10.20948/mm-2020-11-05
(Mi mm4233)
 

This article is cited in 3 scientific papers (total in 3 papers)

Numerical method for determining the inhomogeneity boundary in the electrical impedance tomography problem in the case of piecewise constant conductivity

S. V. Gavrilov

Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
Full-text PDF (343 kB) Citations (3)
References:
Abstract: A two-dimentional electrical impedance tomography problem in case of piecewise constant electrical conductivity taking two known values is considered. The task is to determine the unknown boundary separating regions with different conductivity values. Initial data represents several pairs of current and voltage distributions on the outer boundary of an object. A numerical method for determining the unknown boundary is proposed, numerical results are presented.
Keywords: electrical impedance tomography, piecewise constant conductivity, unknown boundary, numerical method.
Received: 20.01.2020
Revised: 20.01.2020
Accepted: 02.03.2020
English version:
Mathematical Models and Computer Simulations, 2021, Volume 13, Issue 4, Pages 579–585
DOI: https://doi.org/10.1134/S207004822104013X
Document Type: Article
Language: Russian
Citation: S. V. Gavrilov, “Numerical method for determining the inhomogeneity boundary in the electrical impedance tomography problem in the case of piecewise constant conductivity”, Mat. Model., 32:11 (2020), 59–69; Math. Models Comput. Simul., 13:4 (2021), 579–585
Citation in format AMSBIB
\Bibitem{Gav20}
\by S.~V.~Gavrilov
\paper Numerical method for determining the inhomogeneity boundary in the electrical impedance tomography problem in the case of piecewise constant conductivity
\jour Mat. Model.
\yr 2020
\vol 32
\issue 11
\pages 59--69
\mathnet{http://mi.mathnet.ru/mm4233}
\crossref{https://doi.org/10.20948/mm-2020-11-05}
\transl
\jour Math. Models Comput. Simul.
\yr 2021
\vol 13
\issue 4
\pages 579--585
\crossref{https://doi.org/10.1134/S207004822104013X}
Linking options:
  • https://www.mathnet.ru/eng/mm4233
  • https://www.mathnet.ru/eng/mm/v32/i11/p59
  • This publication is cited in the following 3 articles:
    1. A. Yu. Shcheglov, S. V. Netessov, “On Recovering Two Parameters in the Quasilinear Model of Population Dynamics with Age Structuring”, Comput Math Model, 2025  crossref
    2. A. Yu. Shcheglov, “Uniqueness of the Solution of the Inverse Problem for a Model of the Dynamics of an Age-Structured Population”, Math. Notes, 111:1 (2022), 139–146  mathnet  mathnet  crossref  crossref  isi  scopus
    3. A. Yu. Shcheglov, O. A. Andreyanova, “The Inverse Problem for the Nonhomogeneous Oscillation Equation on a Half-Line with a Boundary Condition of the Third Kind”, Comput Math Model, 33:1 (2022), 9  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :49
    References:46
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025