Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2013, Volume 25, Number 12, Pages 50–64 (Mi mm3429)  

This article is cited in 4 scientific papers (total in 4 papers)

Mathematical modelling of media with time dispersion using fractional derivatives

A. N. Bogolyubov, A. A. Koblikov, D. D. Smirnova, N. E. Shapkina

Lomonosov Moscow State University, Chair of Mathematics, Faculty of Рhysics
Full-text PDF (559 kB) Citations (4)
References:
Abstract: Electromagnetic fields in time-dispersed media with power dependence are analysed. It is shown that these media have fractal properties. Their fractal dimension is determined. The equations for scalar and vector potentials are found using Maxwell’s equations analogues presented with the help of Caputo differintegral. Electromagnetic fields are numerically calculated in bounded domain for arbitrary functions of charge and current.
Keywords: fractal electromagnetism, fractional dimention of medium, fractional calculus, time dispersion.
Received: 18.06.2012
Bibliographic databases:
Document Type: Article
UDC: 530.1+537
Language: Russian
Citation: A. N. Bogolyubov, A. A. Koblikov, D. D. Smirnova, N. E. Shapkina, “Mathematical modelling of media with time dispersion using fractional derivatives”, Mat. Model., 25:12 (2013), 50–64
Citation in format AMSBIB
\Bibitem{BogKobSmi13}
\by A.~N.~Bogolyubov, A.~A.~Koblikov, D.~D.~Smirnova, N.~E.~Shapkina
\paper Mathematical modelling of media with time dispersion using fractional derivatives
\jour Mat. Model.
\yr 2013
\vol 25
\issue 12
\pages 50--64
\mathnet{http://mi.mathnet.ru/mm3429}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3221129}
Linking options:
  • https://www.mathnet.ru/eng/mm3429
  • https://www.mathnet.ru/eng/mm/v25/i12/p50
  • This publication is cited in the following 4 articles:
    1. B. Yu. Irgashev, “A boundary value problem with conjugation conditions for a degenerate the equations with the Caputo fractional derivative”, Russian Math. (Iz. VUZ), 66:4 (2022), 24–31  mathnet  crossref  crossref
    2. B. Yu. Irgashev, “On a Problem with Conjugation Conditions for an Equation of Even Order Involving a Caputo Fractional Derivative”, Math. Notes, 112:2 (2022), 215–222  mathnet  crossref  crossref  mathscinet
    3. L. I. Moroz, A. G. Maslovskaya, “Numerical simulation of an anomalous diffusion process based on the higher-order accurate scheme”, Math. Models Comput. Simul., 13:3 (2021), 492–501  mathnet  crossref  crossref
    4. L. I. Moroz, A. G. Maslovskaya, “Hybrid stochastic fractal-based approach to modelling ferroelectrics switching kinetics in injection mode”, Math. Models Comput. Simul., 12:3 (2020), 348–356  mathnet  crossref  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:497
    Full-text PDF :143
    References:77
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025