Processing math: 100%
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2012, Volume 24, Number 10, Pages 51–64 (Mi mm3320)  

This article is cited in 9 scientific papers (total in 9 papers)

The space discretization of the one-dimensional barotropic quasi-gas dynamic system of equations and the energy balance equation

A. A. Zlotnikab

a The National Research University Higher Economics School, Department of Higher Mathematics at the Faculty of Economics
b Moscow Power Engineering Institute (Technical University), Department of Mathematical Modeling
Full-text PDF (310 kB) Citations (9)
References:
Abstract: For the barotropic quasi-gas dynamic system of equations, the law of non-increasing total energy is valid. But even in the spatially one-dimensional case, for its standard discretizations the validity of this law cannot be provided since there appear mesh disbalance terms. We propose a new conservative symmetric in space discretization of this system, for which the energy balance equation of the proper form is derived and non-increasing of the total energy is guaranteed (that takes place even in the presence of the potential mass force). Important elements of the method are non-standard space average of the density depending on the state function and discretization of the derivative of this function. The results are valid for any non-uniform mesh. As an important special case, the results are valid for a regularized (quasi-gas dynamic) system of shallow water equations in the general case of non-flat bottom; moreover, here the non-standard discretizations become standard ones but the method is still new. It is the well-balanced in a sense.
Keywords: gas dynamics, quasi-gasdynamic system of equations, shallow water equations, space discretization, energy balance law.
Received: 16.01.2012
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Zlotnik, “The space discretization of the one-dimensional barotropic quasi-gas dynamic system of equations and the energy balance equation”, Mat. Model., 24:10 (2012), 51–64
Citation in format AMSBIB
\Bibitem{Zlo12}
\by A.~A.~Zlotnik
\paper The space discretization of the one-dimensional barotropic quasi-gas dynamic system of equations and the energy balance equation
\jour Mat. Model.
\yr 2012
\vol 24
\issue 10
\pages 51--64
\mathnet{http://mi.mathnet.ru/mm3320}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3099802}
Linking options:
  • https://www.mathnet.ru/eng/mm3320
  • https://www.mathnet.ru/eng/mm/v24/i10/p51
  • This publication is cited in the following 9 articles:
    1. A. A. Zlotnik, T. A. Lomonosov, “L2-dissipativity of finite-difference schemes for 1D regularized barotropic gas dynamics equations at small Mach numbers”, Math. Models Comput. Simul., 13:6 (2021), 1097–1108  mathnet  crossref  crossref
    2. A. A. Zlotnik, T. A. Lomonosov, “O L2-dissipativnosti linearizovannoi raznostnoi skhemy na raznesennykh setkakh s kvazigidrodinamicheskoi regulyarizatsiei dlya 1D barotropnykh uravnenii dvizheniya gaza”, Preprinty IPM im. M. V. Keldysha, 2021, 072, 27 pp.  mathnet  crossref
    3. T. G. Elizarova, A. V. Ivanov, “Metod regulyarizatsii dlya chislennogo modelirovaniya perenosa primesi v melkoi vode”, Preprinty IPM im. M. V. Keldysha, 2019, 027, 28 pp.  mathnet  crossref  elib
    4. A. A. Zlotnik, T. A. Lomonosov, “Conditions for L2-dissipativity of linearized explicit difference schemes with regularization for 1D barotropic gas dynamics equations”, Comput. Math. Math. Phys., 59:3 (2019), 452–464  mathnet  crossref  crossref  isi  elib
    5. A. A. Zlotnik, “Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations”, Comput. Math. Math. Phys., 57:4 (2017), 706–725  mathnet  crossref  crossref  mathscinet  isi  elib
    6. A. A. Zlotnik, “On conservative spatial discretizations of the barotropic quasi-gasdynamic system of equations with a potential body force”, Comput. Math. Math. Phys., 56:2 (2016), 303–319  mathnet  crossref  crossref  isi  elib
    7. Zlotnik A., Gavrilin V., “On a Conservative Finite-Difference Method for 1D Shallow Water Flows Based on Regularized Equations”, Mathematical Problems in Meteorological Modelling, Mathematics in Industry, 24, eds. Batkai A., Csomos P., Farago I., Horanyi A., Szepszo G., Springer Int Publishing Ag, 2016, 3–18  crossref  mathscinet  zmath  isi
    8. T. G. Elizarova, D. S. Saburin, “Numerical modeling of liquid fluctuations in fuel tanks”, Math. Models Comput. Simul., 5:5 (2013), 470–478  mathnet  crossref
    9. A. A. Zlotnik, “Spatial discretization of one-dimensional quasi-gasdynamic systems of equations and the entropy and energy balance equations”, Dokl. Math., 86:1 (2012), 464–468  crossref  mathscinet  zmath  isi  elib  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:425
    Full-text PDF :120
    References:56
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025