Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2009, Volume 21, Number 4, Pages 3–14 (Mi mm2754)  

This article is cited in 9 scientific papers (total in 9 papers)

Mathematical modeling of the ultrashort light pulse propagation in strongly scattering medium

V. S. Kuznetsova, O. V. Nikolaevab, L. P. Bassb, A. V. Bykovcd, A. V. Priezzhevc

a Russian Research Centre "Kurchatov Institute"
b Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
c Lomonosov Moscow State University
d University of Oulu, Oulu, Finland
Full-text PDF (349 kB) Citations (9)
References:
Abstract: The problem of probing of a nonuniform medium mimicking biological tissue with an ultrashort light pulse is under consideration. Pulse propagation through the medium is described by the time-dependent transport equation which is solved with a grid algorithm. The solution technique relies on analytical representation of nonscattered light intensity and hemi-analytical method of single-scattered light intensity calculation. Numerical results obtained both by the grid algorithm and Monte-Carlo method are presented.
Received: 11.03.2008
English version:
Mathematical Models and Computer Simulations, 2010, Volume 2, Issue 1, Pages 22–32
DOI: https://doi.org/10.1134/S2070048210010035
Bibliographic databases:
Language: Russian
Citation: V. S. Kuznetsov, O. V. Nikolaeva, L. P. Bass, A. V. Bykov, A. V. Priezzhev, “Mathematical modeling of the ultrashort light pulse propagation in strongly scattering medium”, Mat. Model., 21:4 (2009), 3–14; Math. Models Comput. Simul., 2:1 (2010), 22–32
Citation in format AMSBIB
\Bibitem{KuzNikBas09}
\by V.~S.~Kuznetsov, O.~V.~Nikolaeva, L.~P.~Bass, A.~V.~Bykov, A.~V.~Priezzhev
\paper Mathematical modeling of the ultrashort light pulse propagation in strongly scattering medium
\jour Mat. Model.
\yr 2009
\vol 21
\issue 4
\pages 3--14
\mathnet{http://mi.mathnet.ru/mm2754}
\transl
\jour Math. Models Comput. Simul.
\yr 2010
\vol 2
\issue 1
\pages 22--32
\crossref{https://doi.org/10.1134/S2070048210010035}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928987219}
Linking options:
  • https://www.mathnet.ru/eng/mm2754
  • https://www.mathnet.ru/eng/mm/v21/i4/p3
  • This publication is cited in the following 9 articles:
    1. M. A. Donskaya, I. P. Yarovenko, “O vybore metoda rozygrysha svobodnogo probega pri reshenii nestatsionarnogo uravneniya perenosa izlucheniya s ispolzovaniem graficheskikh uskoritelei”, Dalnevost. matem. zhurn., 24:1 (2024), 33–44  mathnet  crossref
    2. P A Vornovskikh, I V Prokhorov, “Applicability of the single-scattering approximation for the ocean acoustic sounding”, J. Phys.: Conf. Ser., 1715:1 (2021), 012051  crossref
    3. P. A. Vornovskikh, A. Kim, I. V. Prokhorov, “Primenimost priblizheniya odnokratnogo rasseyaniya pri impulsnom zondirovanii neodnorodnoi sredy”, Kompyuternye issledovaniya i modelirovanie, 12:5 (2020), 1063–1079  mathnet  crossref
    4. A. Kim, I. V. Prokhorov, “Theoretical and numerical analysis of an initial-boundary value problem for the radiative transfer equation with Fresnel matching conditions”, Comput. Math. Math. Phys., 58:5 (2018), 735–749  mathnet  crossref  crossref  isi  elib
    5. Bykov A., Doronin A., Meglinski I., “Light Propagation in Turbid Tissue-Like Scattering Media”, Deep Imaging in Tissue and Biomedical Materials: Using Linear and Nonlinear Optical Methods, eds. Shi L., Alfano R., Pan Stanford Publishing Pte Ltd, 2017, 295–322  isi
    6. I. V. Prokhorov, “The Cauchy problem for the radiative transfer equation with generalized conjugation conditions”, Comput. Math. Math. Phys., 53:5 (2013), 588–600  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    7. E. N. Aristova, B. V. Rogov, “About implementation of boundary conditions in the bicompact schemes for a linear transport equation”, Math. Models Comput. Simul., 5:3 (2013), 199–207  mathnet  crossref  mathscinet
    8. B. V. Rogov, M. N. Mikhailovskaya, “The monotonic bicompact schemes for a linear transfer equation”, Math. Models Comput. Simul., 4:1 (2012), 92–100  mathnet  crossref  mathscinet  elib
    9. Rogov B.V., Mikhailovskaya M.N., “Monotone bicompact schemes for a linear advection equation”, Dokl. Math., 83:1 (2011), 121–125  crossref  mathscinet  mathscinet  zmath  isi  elib  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:888
    Full-text PDF :193
    References:105
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025