Abstract:
The problem of probing of a nonuniform medium mimicking biological tissue with an ultrashort light pulse is under consideration. Pulse propagation through the medium is described by the time-dependent transport equation which is solved with a grid algorithm. The solution technique relies on analytical representation of nonscattered light intensity and hemi-analytical method of single-scattered light intensity calculation. Numerical results obtained both by the grid algorithm and Monte-Carlo method are presented.
Citation:
V. S. Kuznetsov, O. V. Nikolaeva, L. P. Bass, A. V. Bykov, A. V. Priezzhev, “Mathematical modeling of the ultrashort light pulse propagation in strongly scattering medium”, Mat. Model., 21:4 (2009), 3–14; Math. Models Comput. Simul., 2:1 (2010), 22–32
This publication is cited in the following 9 articles:
M. A. Donskaya, I. P. Yarovenko, “O vybore metoda rozygrysha svobodnogo probega pri reshenii nestatsionarnogo uravneniya perenosa izlucheniya s ispolzovaniem graficheskikh uskoritelei”, Dalnevost. matem. zhurn., 24:1 (2024), 33–44
P A Vornovskikh, I V Prokhorov, “Applicability of the single-scattering approximation for the ocean acoustic sounding”, J. Phys.: Conf. Ser., 1715:1 (2021), 012051
P. A. Vornovskikh, A. Kim, I. V. Prokhorov, “Primenimost priblizheniya odnokratnogo rasseyaniya pri impulsnom zondirovanii neodnorodnoi sredy”, Kompyuternye issledovaniya i modelirovanie, 12:5 (2020), 1063–1079
A. Kim, I. V. Prokhorov, “Theoretical and numerical analysis of an initial-boundary value problem for the radiative transfer equation with Fresnel matching conditions”, Comput. Math. Math. Phys., 58:5 (2018), 735–749
Bykov A., Doronin A., Meglinski I., “Light Propagation in Turbid Tissue-Like Scattering Media”, Deep Imaging in Tissue and Biomedical Materials: Using Linear and Nonlinear Optical Methods, eds. Shi L., Alfano R., Pan Stanford Publishing Pte Ltd, 2017, 295–322
I. V. Prokhorov, “The Cauchy problem for the radiative transfer equation with generalized conjugation conditions”, Comput. Math. Math. Phys., 53:5 (2013), 588–600
E. N. Aristova, B. V. Rogov, “About implementation of boundary conditions in the bicompact schemes for a linear transport equation”, Math. Models Comput. Simul., 5:3 (2013), 199–207
B. V. Rogov, M. N. Mikhailovskaya, “The monotonic bicompact schemes for a linear transfer equation”, Math. Models Comput. Simul., 4:1 (2012), 92–100
Rogov B.V., Mikhailovskaya M.N., “Monotone bicompact schemes for a linear advection equation”, Dokl. Math., 83:1 (2011), 121–125