Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2002, Volume 14, Number 5, Pages 5–16 (Mi mm590)  

This article is cited in 7 scientific papers (total in 7 papers)

2-nd International Conference OFEA'2001 "Optimization of Finite Element Approximation and Splines and Wavelets", June 25-29, 2001, St.-Petersburg

A priori solution estimates of singularly perturbed TWO-point boundary problems

V. B. Andreev

M. V. Lomonosov Moscow State University
Full-text PDF (810 kB) Citations (7)
References:
Bibliographic databases:
Language: Russian
Citation: V. B. Andreev, “A priori solution estimates of singularly perturbed TWO-point boundary problems”, Mat. Model., 14:5 (2002), 5–16
Citation in format AMSBIB
\Bibitem{And02}
\by V.~B.~Andreev
\paper A priori solution estimates of singularly perturbed TWO-point boundary problems
\jour Mat. Model.
\yr 2002
\vol 14
\issue 5
\pages 5--16
\mathnet{http://mi.mathnet.ru/mm590}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1937332}
\zmath{https://zbmath.org/?q=an:1036.34025}
Linking options:
  • https://www.mathnet.ru/eng/mm590
  • https://www.mathnet.ru/eng/mm/v14/i5/p5
  • This publication is cited in the following 7 articles:
    1. Das P., “A Higher Order Difference Method For Singularly Perturbed Parabolic Partial Differential Equations”, J. Differ. Equ. Appl., 24:3 (2018), 452–477  crossref  mathscinet  isi  scopus
    2. Cimen E., “a Priori Estimates For Solution of Singularly Perturbed Boundary Value Problem With Delay in Convection Term”, J. Math. Anal., 8:1 (2017), 202–211  mathscinet  isi
    3. Franz S., Kopteva N., “Green's function estimates for a singularly perturbed convection-diffusion problem”, J Differential Equations, 252:2 (2012), 1521–1545  crossref  mathscinet  zmath  adsnasa  isi  scopus
    4. Linss, T, “Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems Introduction”, Layer-Adapted Meshes For Reaction-Convection-Diffusion Problems, 1985 (2010), 1  crossref  mathscinet  adsnasa  isi  scopus
    5. Linss T., Kopteva N., “A Posteriori Error Estimation for a Defect-Correction Method Applied to Convection-Diffusion Problems”, Int J Numer Anal Model, 7:4 (2010), 718–733  mathscinet  zmath  isi  elib
    6. O'Riordan E., Stynes J., Stynes M., “An Iterative Numerical Algorithm for a Strongly Coupled System of Singularly Perturbed Convection-Diffusion Problems”, Numerical Analysis and its Applications - 4th International Conference, NAA 2008, Lecture Notes in Computer Science, 5434, 2009, 104–115  crossref  mathscinet  zmath  isi
    7. O'Riordan, E, “A Parameter-Uniform Finite Difference Method for a Coupled System of Convection-Diffusion Two-Point Boundary Value Problems”, Numerical Mathematics-Theory Methods and Applications, 1:2 (2008), 176  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:534
    Full-text PDF :247
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025